Fraction auctions: The tradeoff between efficiency and running time

This paper studies the sales of a single indivisible object where bidders have continuous valuations. In Grigorieva et al. [14] it was shown that, in this setting, query auctions necessarily allocate inefficiently in equilibrium. In this paper we propose a new sequential auction, called the c-fraction auction. We show the existence of an ex-post equilibrium, called bluff equilibrium, in which bidders behave truthfully except for particular constellations of observed bids at which it is optimal to pretend a slightly higher valuation. We show c-fraction auctions guarantee approximate efficiency at any desired level of accuracy, independent of the number of bidders, when bidders choose to play the bluff equilibrium. We discuss the running time and the efficiency in the bluff equilibrium. We show that by changing the parameter c of the auction we can trade off efficiency against running time. (This abstract was borrowed from another version of this item.)

[1]  R. Preston McAfee,et al.  7. The Greatest Auction in History , 2010 .

[2]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[3]  David C. Parkes,et al.  Optimal Auction Design for Agents with Hard Valuation Problems , 1999, Agent Mediated Electronic Commerce.

[4]  Michael Suk-Young Chwe,et al.  The discrete bid first auction , 1989 .

[5]  Rudolf Müller,et al.  The Communication Complexity of Private Value Single Item Auctions , 2005, Oper. Res. Lett..

[6]  Jin Yu Discrete approximation of continuous allocation mechanisms , 1999 .

[7]  Tuomas Sandholm,et al.  Issues in Computational Vickrey Auctions , 2000, Int. J. Electron. Commer..

[8]  Noam Nisany,et al.  The Communication Requirements of E¢cient Allocations and Supporting Lindahl Prices¤ , 2003 .

[9]  Vincent Conitzer,et al.  Computational criticisms of the revelation principle , 2004, EC '04.

[10]  Rudolf Müller,et al.  Inefficiency of Equilibria in Query Auctions with Continuous Valuations , 2006, Computational Social Systems and the Internet.

[11]  Tuomas Sandholm,et al.  Effectiveness of Preference Elicitation in Combinatorial Auctions , 2002, AMEC.

[12]  Richard Engelbrecht-Wiggans,et al.  Protecting the winner: Second-price versus oral auctions , 1991 .

[13]  P. Cramton Simultaneous Ascending Auctions , 2004 .

[14]  Michael H. Rothkopf,et al.  On the role of discrete bid levels in oral auctions , 1994 .

[15]  Lawrence M. Ausubel,et al.  The Clock-Proxy Auction: A Practical Combinatorial Auction Design , 2004 .

[16]  Debasis Mishra,et al.  Vickrey-Dutch procurement auction for multiple items , 2007, Eur. J. Oper. Res..

[17]  Noam Nisan,et al.  Auctions with Severely Bounded Communication , 2007, J. Artif. Intell. Res..

[18]  Sarit Kraus,et al.  Optimal design of English auctions with discrete bid levels , 2005, EC '05.

[19]  Sarit Kraus,et al.  Learning Environmental Parameters for the Design of Optimal English Auctions with Discrete Bid Levels , 2005, AMEC@AAMAS/TADA@IJCAI.

[20]  T. Sandholm,et al.  Costly valuation computation in auctions , 2001 .

[21]  P. Jean-Jacques Herings,et al.  Inefficiency of equilibria in digital mechanisms with continuous valuations , 2011 .

[22]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2001, AAMAS '02.

[23]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2002, EC '01.

[24]  P. Jean-Jacques Herings,et al.  The private value single item bisection auction , 2002 .

[25]  Sven de Vries,et al.  On ascending Vickrey auctions for heterogeneous objects , 2007, J. Econ. Theory.

[26]  Noam Nisan,et al.  Multi-player and Multi-round Auctions with Severely Bounded Communication , 2003, ESA.

[27]  T. Sandholm,et al.  Preference Elicitation in Combinatorial Auctions (Extended Abstract) , 2001 .

[28]  M. Rothkopf,et al.  Why Are Vickrey Auctions Rare? , 1990, Journal of Political Economy.

[29]  Dries Vermeulen,et al.  The Communication Complexity of Private Value Single Item Auctions , 2005 .

[30]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[31]  R. Preston McAfee,et al.  “The Greatest Auction in History” , 2007 .