Molecular daisy chains.

This tutorial review summarizes the progress made towards mechanically interlocked daisy chains. Such materials can be seen as a further development in polymer science, where the conventional covalent interlinking bonds are replaced by supramolecular binding concepts. Materials in which the mechanical bond is an integral part of the polymeric backbone are expected to possess unique macroscopic properties and are therefore the synthetic aim in an ever growing research community. After introducing general considerations about daisy chains, the most common analytic methods to get insight into the aggregation behaviour of such self-complementary monomers are presented. Cyclodextrins/aromatic rods, crown ethers/cationic rods and pillararenes/alkyl chains are systems used to achieve daisy chain-like molecular arrays. By comparison of the reported systems, conclusions about an improved structural design are drawn.

[1]  Mingming Zhang,et al.  A Crown Ether Appended Super Gelator with Multiple Stimulus Responsiveness , 2012, Advanced materials.

[2]  Bo Zheng,et al.  Supramolecular polymers constructed by crown ether-based molecular recognition. , 2012, Chemical Society reviews.

[3]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[4]  J. F. Stoddart,et al.  A self-complexing and self-assembling pillar[5]arene. , 2012, Chemical communications.

[5]  Mingming Zhang,et al.  A benzo-21-crown-7/secondary ammonium salt [c2]daisy chain. , 2012, Organic letters.

[6]  Feihe Huang,et al.  Preparation of a Daisy Chain via Threading-Followed-by-Polymerization , 2011 .

[7]  P. Beer,et al.  A Janus [2]rotaxane synthesized by using an anion-templated clipping methodology. , 2011, Chemistry.

[8]  Ji Hoon Lee,et al.  Influence of polymer matrix crystallinity on nanocomposite morphology and properties , 2011 .

[9]  Feihe Huang,et al.  Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces. , 2011, Organic letters.

[10]  Hans-Henning Kausch-Blecken von Schmeling,et al.  Eighty years of macromolecular science: from birth to nano-, bio- and self-assembling polymers—with slight emphasis on European contributions , 2011 .

[11]  Feihe Huang,et al.  Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. , 2011, Chemical communications.

[12]  T. Ogoshi,et al.  Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. , 2011, Chemical communications.

[13]  J. Cvačka,et al.  Transition-metal-complexed cyclic [3]- and [4]pseudorotaxanes containing rigid ring-and-filament conjugates: synthesis and solution studies. , 2011, Chemistry.

[14]  Bo Zheng,et al.  A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. , 2011, Angewandte Chemie.

[15]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[16]  Y. Takashima,et al.  Double-threaded dimer and supramolecular oligomer formed by stilbene modified cyclodextrin: effect of acyl migration and photostimuli. , 2011, The Journal of organic chemistry.

[17]  Jun Yu Li,et al.  Polyrotaxanes for applications in life science and biotechnology , 2011, Applied Microbiology and Biotechnology.

[18]  F. Coutrot,et al.  Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. , 2010, The Journal of organic chemistry.

[19]  J. F. Stoddart,et al.  On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer , 2010 .

[20]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[21]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[22]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[23]  Y. Takashima,et al.  Social self-sorting: alternating supramolecular oligomer consisting of isomers. , 2009, Journal of the American Chemical Society.

[24]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[25]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[26]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[27]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[28]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[29]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[30]  Yong Chen,et al.  Syntheses and self-assembly behaviors of the azobenzenyl modified beta-cyclodextrins isomers. , 2008, The Journal of organic chemistry.

[31]  Xian Jun Loh,et al.  Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. , 2008, Advanced drug delivery reviews.

[32]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[33]  Akira Harada,et al.  Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-alpha-cyclodextrin by photoirradiation. , 2008, Journal of the American Chemical Society.

[34]  Yi‐Hung Liu,et al.  Capturing a [c2]daisy chain using the threading-followed-by-swelling approach. , 2008, Chemical communications.

[35]  Y. Takashima,et al.  A chemical-responsive supramolecular hydrogel from modified cyclodextrins. , 2007, Angewandte Chemie.

[36]  J. F. Stoddart,et al.  Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. , 2007, Journal of the American Chemical Society.

[37]  H. Anderson,et al.  Insulated molecular wires. , 2007, Angewandte Chemie.

[38]  Susumu Tsuda,et al.  Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. , 2006, Chemical communications.

[39]  Bao-hang Han,et al.  Cyclodextrin rotaxanes and polyrotaxanes. , 2006, Chemical reviews.

[40]  Feihe Huang,et al.  Polypseudorotaxanes and polyrotaxanes , 2005 .

[41]  Y. Takashima,et al.  Chiral supramolecular polymers formed by host-guest interactions. , 2005, Journal of the American Chemical Society.

[42]  A. Harada,et al.  Formation of Supramolecular Polymers Constructed by Cyclodextrins with Cinnamamide , 2004 .

[43]  A. Harada,et al.  Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests , 2004 .

[44]  T. Takata,et al.  Polyrotaxanes and Polycatenanes: Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures , 2004 .

[45]  Yu Liu,et al.  Supramolecular self-assemblies of beta-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures. , 2003, The Journal of organic chemistry.

[46]  G. Hadziioannou,et al.  Mechanically Linked Polyrotaxanes: A Stepwise Approach , 2003 .

[47]  David J. Williams,et al.  Diastereospecific photochemical dimerization of a stilbene-containing daisy chain monomer in solution as well as in the solid state. , 2003, Angewandte Chemie.

[48]  Yu Liu,et al.  Binding ability and self-assembly behavior of linear polymeric supramolecules formed by modified beta-cyclodextrin. , 2003, Organic letters.

[49]  David J. Williams,et al.  An hermaphroditic [c2]daisy chain. , 2002, Chemical communications.

[50]  J. F. Stoddart,et al.  Surrogate-stoppered [2]rotaxanes: A new route to larger interlocked architectures , 2002 .

[51]  Hee‐eun Song,et al.  Facile Dimerization and Circular Dichroism Characteristics of 6-O-(2-Sulfonato-6-naphthyl)-β-cyclodextrin , 2002 .

[52]  Yoshihisa Inoue,et al.  Photoswitching of the association of a permethylated α-cyclodextrin-azobenzene dyad forming a Janus [2]pseudorotaxane☆ , 2001 .

[53]  J. F. Stoddart,et al.  Supramolecular daisy chains. , 2001, The Journal of organic chemistry.

[54]  D. Dolphin,et al.  Aggregation studies of benzoporphyrin derivative , 2001 .

[55]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[56]  S. Lincoln,et al.  An hermaphrodite [2]rotaxane: preparation and analysis of structure. , 2001, Organic letters.

[57]  A. Harada,et al.  Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins , 2000 .

[58]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[59]  SakataYoshiteru,et al.  The First Competitive Formation of [4] and [2]Supercyclodextrins by Self-Association of an α-Cyclodextrin Bearing a Bisazophenol Group , 2000 .

[60]  JungJong Hwa,et al.  The First Lipophilic Face-to-Face Dimers of Permethylated α-Cyclodextrin-Azobenzene Dyads through a p-Xylylene Spacer , 2000 .

[61]  K. Osakada,et al.  Synthesis of polyurea rotaxanes using a cyclodextrin complex of α,ω-diamine , 2000 .

[62]  Stoddart,et al.  Toward Daisy Chain Polymers: "Wittig Exchange" of Stoppers in , 2000, Organic letters.

[63]  A. Hayman,et al.  Aggregation of ω-Hydroxy Quaternary Ammonium Bolaform Surfactants , 2000 .

[64]  Y. Sakata,et al.  The first Janus [2]rotaxane , 2000 .

[65]  D. Reinhoudt,et al.  Interconnective host-guest complexation of b-cyclodextrin-calix[4]arene couples , 1999 .

[66]  J. Watanabe,et al.  PREPARATION AND CHARACTERIZATION OF A POLYROTAXANE WITH NON-ENZYMATICALLY HYDROLYZABLE STOPPERS , 1998 .

[67]  H. Gibson,et al.  Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.

[68]  Andrew J. P. White,et al.  Self-assembling supramolecular daisy chains , 1998 .

[69]  H. Gibson,et al.  Supramolecular chemistry with macromolecules : New self-assembly based main chain polypseudorotaxanes and their properties , 1998 .

[70]  Andrew J. P. White,et al.  Supramolecular Daisy Chains. , 1998, Angewandte Chemie.

[71]  M. Garcia‐Garibay,et al.  Studies of Naphthyl-Substituted β-Cyclodextrins. Self-Aggregation and Inclusion of External Guests , 1998 .

[72]  H. Anderson,et al.  An approach to insulated molecular wires: synthesis of water-soluble conjugated rotaxanes , 1998 .

[73]  H. Gibson,et al.  Studies of the Formation of Poly(ester rotaxane)s from Diacid Chlorides, Diols, and Crown Ethers and Their Properties , 1997 .

[74]  H. Anderson,et al.  Synthesis of a Water‐Soluble Conjugated [3]Rotaxane , 1996 .

[75]  T. Swager,et al.  CONDUCTING POLYMETALLOROTAXANES : A SUPRAMOLECULAR APPROACH TO TRANSITION METAL ION SENSORS , 1996 .

[76]  A. Coleman,et al.  The crystal structure of 6I-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. , 1996, Carbohydrate research.

[77]  C. Rizzoli,et al.  Self-assembling of p-tert-butylcalix[4]arene into supramolecular structures using transition-metal derivatization , 1996 .

[78]  H. Gibson,et al.  Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .

[79]  Y. Inoue,et al.  Molecular recognition by modified cyclodextrins. Inclusion complexation of β-cyclodextrin 6-O-monobenzoate with acyclic and cyclic hydrocarbons , 1992 .

[80]  F. Diederich,et al.  Redox-dependent binding ability of a flavin cyclophane in aqueous solution: hydrophobic stacking versus cavity-inclusion complexation , 1990 .

[81]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[82]  F. Menger,et al.  Binding properties of 1-pyrenesulfonic acid in water , 1987 .

[83]  R. Margalit,et al.  Fluorimetric studies on the dimerization equilibrium of protoporphyrin IX and its haemato derivative. , 1983, The Biochemical journal.

[84]  T. Ueda,et al.  POLYMERIC INCLUSION COMPOUND DERIVED FROM β-CYCLODEXTRIN , 1982 .

[85]  T. Drakenberg,et al.  Amphiphile aggregation number and conformation from carbon-13 nuclear magnetic resonance chemical shifts , 1976 .