Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis

Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts.

[1]  P. Cheng,et al.  An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. , 2015, Angewandte Chemie.

[2]  M. Vandichel,et al.  Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. , 2012, Angewandte Chemie.

[3]  Zhijuan Zhang,et al.  A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. , 2012, Journal of the American Chemical Society.

[4]  Chuande Wu,et al.  From 2D to 3D: a single-crystal-to-single-crystal photochemical framework transformation and phenylmethanol oxidation catalytic activity. , 2011, Chemistry.

[5]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[6]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[7]  T. Akita,et al.  Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. , 2009, Journal of the American Chemical Society.

[8]  Yi Luo,et al.  Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. , 2016, Angewandte Chemie.

[9]  Geoffrey I N Waterhouse,et al.  A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[10]  Dawei Feng,et al.  Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. , 2013, Journal of the American Chemical Society.

[11]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[12]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[13]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[14]  C. Serre,et al.  Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101 , 2009 .

[15]  Dirk De Vos,et al.  Adsorptive separation on metal-organic frameworks in the liquid phase. , 2014, Chemical Society reviews.

[16]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[17]  J. Čejka,et al.  Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites , 2013 .

[18]  Chao Zou,et al.  Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. , 2012, Journal of the American Chemical Society.

[19]  H. García,et al.  Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. , 2014, Chemical Society reviews.

[20]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[21]  L. Wojtas,et al.  Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme. , 2011, Journal of the American Chemical Society.

[22]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[23]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[24]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[25]  Pengyan Wu,et al.  Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. , 2012, Journal of the American Chemical Society.

[26]  L. Long,et al.  Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. , 2015, Journal of the American Chemical Society.

[27]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[28]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[29]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[30]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[31]  David Farrusseng,et al.  Water adsorption in MOFs: fundamentals and applications. , 2014, Chemical Society reviews.

[32]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[33]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[34]  L. Wojtas,et al.  Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. , 2012, Angewandte Chemie.

[35]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[36]  Cheng Wang,et al.  Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. , 2012, Chemical reviews.

[37]  Banglin Chen,et al.  Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes. , 2012, Journal of the American Chemical Society.

[38]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[39]  S. Nolan,et al.  N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. , 2011, Chemical Society reviews.

[40]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[41]  Chuande Wu,et al.  Rational construction of metal–organic frameworks for heterogeneous catalysis , 2014 .

[42]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[43]  Lijun Yan,et al.  Four metalloporphyrinic frameworks as heterogeneous catalysts for selective oxidation and aldol reaction. , 2013, Inorganic chemistry.

[44]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[45]  Banglin Chen,et al.  Highly efficient C-H oxidative activation by a porous Mn(III) -porphyrin metal-organic framework under mild conditions. , 2013, Chemistry.

[46]  Jihye Park,et al.  Metal–Organic Frameworks as Biomimetic Catalysts , 2014 .

[47]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[48]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[49]  R. Xiong,et al.  Ferroelectric metal-organic frameworks. , 2012, Chemical reviews.

[50]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[51]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[52]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[53]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[54]  A. M. Chibiryaev,et al.  Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101 , 2013 .

[55]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[56]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[57]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[58]  H. Cui,et al.  A stable and porous iridium(III)-porphyrin metal–organic framework: synthesis, structure and catalysis , 2016 .

[59]  H. R. Moon,et al.  Fabrication of metal nanoparticles in metal-organic frameworks. , 2013, Chemical Society reviews.

[60]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[61]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[62]  K. Tamaki,et al.  Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2008, Journal of the American Chemical Society.

[63]  Chao Zou,et al.  A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. , 2014, Angewandte Chemie.

[64]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[65]  Chuande Wu,et al.  A nanoporous metal-organic framework with accessible Cu2+ sites for the catalytic Henry reaction. , 2011, Chemical communications.

[66]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[67]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[68]  Joachim Sauer,et al.  Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes. , 2011, Chemistry.

[69]  Chao Zou,et al.  A Sn(IV)-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides. , 2011, Inorganic chemistry.

[70]  Chuande Wu,et al.  Metalloporphyrinic framework containing multiple pores for highly efficient and selective epoxidation. , 2014, Inorganic chemistry.

[71]  D. Tryk,et al.  Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials , 2006 .

[72]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[73]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[74]  N. Maksimchuk,et al.  Heterogeneous Selective Oxidation of Alkenes to α,β‐ Unsaturated Ketones over Coordination Polymer MIL‐101 , 2010 .

[75]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[76]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[77]  Abraham M. Shultz,et al.  Active-site-accessible, porphyrinic metal-organic framework materials. , 2011, Journal of the American Chemical Society.

[78]  G. Mínguez Espallargas,et al.  Dynamic magnetic MOFs. , 2013, Chemical Society reviews.

[79]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[80]  J. Hupp,et al.  Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. , 2012, Journal of the American Chemical Society.

[81]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[82]  Chuande Wu,et al.  Porous metal-organic frameworks for heterogeneous biomimetic catalysis. , 2014, Accounts of chemical research.

[83]  Soon-Yong Jeong,et al.  Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101. , 2009, Chemical communications.

[84]  Yi Luo,et al.  Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States. , 2015, Journal of the American Chemical Society.

[85]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[86]  J. Navarro,et al.  Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. , 2014, Chemical Society reviews.

[87]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[88]  Yong Cui,et al.  Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. , 2012, Journal of the American Chemical Society.

[89]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[90]  Zhan Shi,et al.  Crystal Facets Make a Profound Difference in Polyoxometalate-Containing Metal-Organic Frameworks as Catalysts for Biodiesel Production. , 2015, Journal of the American Chemical Society.

[91]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[92]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[93]  Jack D. Evans,et al.  Post-synthetic metalation of metal-organic frameworks. , 2014, Chemical Society reviews.

[94]  Wen-Yang Gao,et al.  Metal-metalloporphyrin frameworks: a resurging class of functional materials. , 2014, Chemical Society reviews.

[95]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[96]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society Reviews.

[97]  H. Furukawa,et al.  A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. , 2011, Journal of the American Chemical Society.

[98]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.