The Processing of Temporal Pitch and Melody Information in Auditory Cortex

[1]  M. Scherg,et al.  Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians , 2002, Nature Neuroscience.

[2]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[3]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[4]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[5]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[6]  R. Patterson,et al.  The lower limit of melodic pitch. , 2001, The Journal of the Acoustical Society of America.

[7]  R. Patterson,et al.  Encoding of the temporal regularity of sound in the human brainstem , 2001, Nature Neuroscience.

[8]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[9]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[10]  S. Clarke,et al.  Intrinsic connectivity of human auditory areas: a tracing study with DiI , 2001, The European journal of neuroscience.

[11]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[12]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Patterson,et al.  The lower limit of pitch as determined by rate discrimination. , 2000, The Journal of the Acoustical Society of America.

[15]  J. E. Hind,et al.  Auditory cortex on the human posterior superior temporal gyrus , 2000, The Journal of comparative neurology.

[16]  R. Zatorre,et al.  Functional specificity in the right human auditory cortex for perceiving pitch direction. , 2000, Brain : a journal of neurology.

[17]  R. Bowtell,et al.  “sparse” temporal sampling in auditory fMRI , 1999, Human brain mapping.

[18]  R. Weisskoff,et al.  Improved auditory cortex imaging using clustered volume acquisitions , 1999, Human brain mapping.

[19]  Richard S. J. Frackowiak,et al.  Analysis of temporal structure in sound by the human brain , 1998, Nature Neuroscience.

[20]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[21]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[22]  Alan R. Palmer,et al.  A high-output, high-quality sound system for use in auditory fMRI , 1998, NeuroImage.

[23]  Alan R. Palmer,et al.  Psychophysical and Physiological Advances in Hearing , 1998 .

[24]  J. R. Baker,et al.  Imaging subcortical auditory activity in humans , 1998, Human brain mapping.

[25]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[26]  Roy D. Patterson,et al.  The relative strength of the tone and noise components in iterated rippled noise , 1996 .

[27]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[28]  W. Yost Pitch of iterated rippled noise. , 1996, The Journal of the Acoustical Society of America.

[29]  W A Yost,et al.  A time domain description for the pitch strength of iterated rippled noise. , 1996, The Journal of the Acoustical Society of America.

[30]  R. Patterson,et al.  Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. , 1995, The Journal of the Acoustical Society of America.

[31]  Roy D. Patterson,et al.  The sound of a sinusoid: Time‐interval models , 1994 .

[32]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[34]  R B Masterton,et al.  Central auditory system. , 1993, ORL; journal for oto-rhino-laryngology and its related specialties.

[35]  Alan R. Palmer,et al.  Cochlear Nerve and Cochlear Nucleus Responses to the Fundamental Frequency of Voiced Speech Sounds and Harmonic Complex Tones , 1992 .

[36]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[37]  R. Zatorre,et al.  Melodic and harmonic discrimination following unilateral cerebral excision , 1988, Brain and Cognition.