Fabrication of a flexible UV band-pass filter using surface plasmon metal-polymer nanocomposite films for promising laser applications.

We introduce a strategy for the fabrication of silver/polycarbonate (Ag/PC) nanocomposite flexible films of (20 ± 0.01) μm thickness with different filling factor of surface plasmon metal using customized solution cast-thermal evaporation method. Structural characterizations confirmed the good crystallinity with cubic phase of Ag nanoparticles in PC films. Moreover, the microstructural evolutions of nanocomposite films are investigated by transmission electron microscopy, which indicates that the metal fraction is in the form of fractals. Additionally, the surface plasmonic behavior of nanocomposite films has been explored in detail to examine the distribution of Ag nanoparticles in PC film by spectroscopic technique. Furthermore, the obtained transmittance spectral features of this nanocomposite film are suitable for the applications of band-pass filter at 320 nm UV range, which is highly desirable for a HeCd laser.

[1]  M. Temgire,et al.  Optical and structural studies of silver nanoparticles , 2004 .

[2]  A. Mitra,et al.  Green Synthesis of Silver Nanoparticles and the Study of Optical Properties , 2012 .

[3]  Z. Milan,et al.  Silver-silica transparent metal structures as bandpass filters for the ultraviolet range , 2005 .

[4]  V. Zaporojtchenko,et al.  Synthesis and characterization of Ag-polymer nanocomposites. , 2010, Journal of nanoscience and nanotechnology.

[5]  Preparation and characterization of dendritic silver nanoparticles , 2005 .

[6]  Sang Hyun Lee,et al.  Preparation of silver nanoparticles and antibiotic test of its polycarbonate films composite. , 2008, Journal of nanoscience and nanotechnology.

[7]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[8]  Jason E. Riggs,et al.  Strong Optical Limiting of Silver-Containing Nanocrystalline Particles in Stable Suspensions , 1999 .

[9]  Walter Caseri,et al.  Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties , 2000 .

[10]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[11]  A. K. Thakur,et al.  Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications , 2011 .

[12]  Michael Scalora,et al.  Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures , 1998 .

[13]  L. Nicolais,et al.  Metal-Polymer nanocomposites , 2003 .

[14]  P. Lagoudakis,et al.  Silver nanoparticle impregnated polycarbonate substrates for plasmonic applications , 2009, 2009 IEEE/LEOS Winter Topicals Meeting Series.

[15]  Michael Scalora,et al.  Transmissive properties of Ag/MgF2 photonic band gaps , 1998 .

[16]  Thawatchai Maneerung,et al.  Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing , 2008 .

[17]  A. Murugadoss,et al.  A ‘green’ chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst , 2008, Nanotechnology.

[18]  Linda F. Johnson,et al.  Effective permittivity near zero in nanolaminates of silver and amorphous polycarbonate , 2010 .

[19]  W. Caseri,et al.  Oriented pearl-necklace arrays of metallic nanoparticles in polymers : a new route toward polarization-dependent color filters , 1999 .

[20]  A. Suzuki,et al.  Au(III)–PAMAM Interaction and Formation of Au–PAMAM Nanocomposites in Ethyl Acetate , 2001 .

[21]  J. Werner,et al.  Changes of the optical and electrical properties of plasma polymer-metal composite films during thermal annealing , 1994 .

[22]  Soumik Siddhanta,et al.  Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing: , 2012 .

[23]  S. Zaman,et al.  Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode , 2011 .

[24]  Noorsaiyyidah Darman Singho,et al.  FTIR Studies on Silver-Poly(Methylmethacrylate) Nanocomposites via In-Situ Polymerization Technique , 2012 .

[25]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[26]  S. Irusta,et al.  Silver nanowires/polycarbonate composites for conductive films , 2012 .

[27]  P. Judeinstein,et al.  Hybrid organic–inorganic materials: a land of multidisciplinarity , 1996 .

[28]  Dingsheng Wang,et al.  Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. , 2006, Chemistry, an Asian journal.

[29]  V. Zaporojtchenko,et al.  Plasmonic properties of Ag nanoclusters in various polymer matrices , 2006, Nanotechnology.

[30]  B. K. Gupta,et al.  Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters. , 2013, ACS applied materials & interfaces.

[31]  Y. Mishra,et al.  Synthesis of metal–polymer nanocomposite for optical applications , 2007 .

[32]  Koji Fujita,et al.  Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles , 2008 .

[33]  Ifor D. W. Samuel,et al.  Production and luminescent properties of CdSe and CdS nanoparticle–polymer composites , 2004 .