Probing leptogenesis at future colliders

[1]  V. Cerný,et al.  Search for heavy neutral lepton production in K+ decays , 2017, 1712.00297.

[2]  V. Sorokin Smirnov , 2019, 21.

[3]  G. Lanfranchi,et al.  NA62 sensitivity to heavy neutral leptons in the low scale seesaw model , 2018, Proceedings of XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects — PoS(DIS2019).

[4]  G. Cottin,et al.  Displaced vertices as probes of sterile neutrino mixing at the LHC , 2018, Physical Review D.

[5]  Lisa Randall,et al.  What Is Dark Matter? , 2018, Nature.

[6]  J. Helo,et al.  Heavy neutral fermions at the high-luminosity LHC , 2018, Journal of High Energy Physics.

[7]  S. Trojanowski,et al.  Heavy Neutral Leptons at FASER , 2018, 1801.08947.

[8]  R. Mohapatra,et al.  Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms , 2017, 1709.06553.

[9]  M. Shaposhnikov,et al.  Freeze-out of baryon number in low-scale leptogenesis , 2017, 1709.07834.

[10]  S. Antusch,et al.  Heavy neutrino-antineutrino oscillations at colliders , 2017 .

[11]  A. Abada,et al.  Neutrino masses, leptogenesis and dark matter from small lepton number violation? , 2017, 1709.00415.

[12]  S. Antusch,et al.  Sterile neutrino searches via displaced vertices at LHCb , 2017, 1706.05990.

[13]  T. Hambye,et al.  Baryogenesis from L -violating Higgs-doublet decay in the density-matrix formalism , 2017, 1705.00016.

[14]  P. Hernández,et al.  The seesaw portal in testable models of neutrino masses , 2017, 1704.08721.

[15]  T. Asaka,et al.  Initial condition for baryogenesis via neutrino oscillation , 2017, 1704.02692.

[16]  M. Shaposhnikov,et al.  Fermion number violating effects in low scale leptogenesis , 2017, 1703.06085.

[17]  M. Laine,et al.  GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations , 2017, 1703.06087.

[18]  N. Okada,et al.  Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches , 2017, 1702.04668.

[19]  A. Das Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework , 2017, 1701.04946.

[20]  M. Drewes,et al.  Combining experimental and cosmological constraints on heavy neutrinos , 2015, 1502.00477.

[21]  S. Antusch,et al.  Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders , 2016, 1612.02728.

[22]  J. López‐Pavón,et al.  The seesaw path to leptonic CP violation , 2016, 1611.05000.

[23]  M. Drewes,et al.  Testing the low scale seesaw and leptogenesis , 2016, 1609.09069.

[24]  E. Graverini SHiP sensitivity to Heavy Neutral Leptons , 2016 .

[25]  M. Hirsch,et al.  Quasi-Dirac neutrinos at the LHC , 2016, 1607.05641.

[26]  J. López‐Pavón,et al.  Testable baryogenesis in seesaw models , 2016, 1606.06719.

[27]  M. Drewes,et al.  Leptogenesis from oscillations of heavy neutrinos with large mixing angles , 2016, 1606.06690.

[28]  T. Asaka,et al.  On neutrinoless double beta decay in the nu MSM , 2016, 1606.06686.

[29]  T. Hambye,et al.  Higgs Doublet Decay as the Origin of the Baryon Asymmetry. , 2016, Physical review letters.

[30]  A. D. Plascencia,et al.  Dark matter and leptogenesis linked by classical scale invariance , 2016, 1605.06834.

[31]  Kechen Wang,et al.  Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC , 2016, 1605.01123.

[32]  M. Lindner,et al.  Left-right symmetry and lepton number violation at the Large Hadron electron Collider , 2016, 1604.08596.

[33]  M. P. Casado,et al.  Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW∗→eνμν with the ATLAS detector at s=8$$ \sqrt{s}=8 $$ TeV , 2016 .

[34]  S. Antusch,et al.  Displaced vertex searches for sterile neutrinos at future lepton colliders , 2016, 1604.02420.

[35]  A. Das,et al.  Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond , 2016, 1604.00608.

[36]  I. A. Monroy,et al.  Observation of $ \Lambda_b^0 \to \psi(2S)pK^-$ and $ \Lambda_b^0 \to J/\psi \pi^+ \pi^- pK^-$ decays and a measurement of the $\Lambda_b^0$ baryon mass , 2016, 1603.06961.

[37]  O. Mattelaer,et al.  Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders , 2016, 1602.06957.

[38]  J. Lesgourgues,et al.  A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.

[39]  N. Okada,et al.  Improved bounds on the heavy neutrino productions at the LHC , 2015, 1510.04790.

[40]  T. Asaka,et al.  Perturbativity in the seesaw mechanism , 2015, 1509.02678.

[41]  M. Drewes,et al.  Neutrinoless double β decay and low scale leptogenesis , 2016 .

[42]  Oliver Fischer,et al.  Higgs production from sterile neutrinos at future lepton colliders , 2015, 1512.06035.

[43]  M. Drewes,et al.  Sterile neutrino Dark Matter production from scalar decay in a thermal bath , 2015, Journal of High Energy Physics.

[44]  Doojin Kim,et al.  Disambiguating seesaw models using invariant mass variables at hadron colliders , 2015, 1510.04328.

[45]  R. Ruiz Hadron collider tests of neutrino mass-generating mechanisms , 2015, 1509.06375.

[46]  M. P. Casado,et al.  Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015 .

[47]  C. Dib,et al.  Discovering sterile Neutrinos ligther than $M_W$ at the LHC , 2015, 1509.05981.

[48]  R. Ruiz QCD corrections to pair production of Type III Seesaw leptons at hadron colliders , 2015, 1509.05416.

[49]  T. Asaka,et al.  Seesaw mechanism at electron-electron colliders , 2015, 1508.04937.

[50]  S. Antusch,et al.  Testing sterile neutrino extensions of the Standard Model at the Circular Electron Positron Collider , 2015 .

[51]  J. López‐Pavón,et al.  Leptogenesis in GeV-scale seesaw models , 2015, 1508.03676.

[52]  R. Mohapatra,et al.  Unified Explanation of the eejj, Diboson, and Dijet Resonances at the LHC. , 2015, Physical review letters.

[53]  A. Abada,et al.  Lepton number violation as a key to low-scale leptogenesis , 2015, 1507.06215.

[54]  S. Petcov,et al.  Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay , 2015, 1506.05296.

[55]  Marta Losada,et al.  Probing the Type I Seesaw mechanism with displaced vertices at the LHC , 2015, 1505.05880.

[56]  J. Gluza,et al.  Heavy neutrinos and the pp→lljj CMS data , 2015, 1504.05568.

[57]  B. Shuve,et al.  Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos , 2015, 1504.02470.

[58]  E. Graverini,et al.  Search for New Physics in SHiP and at future colliders , 2015, 1503.08624.

[59]  P. S. Bhupal Dev,et al.  Prospects of Heavy Neutrino Searches at Future Lepton Colliders , 2015, 1503.05491.

[60]  D. Bečirević,et al.  Lepton flavor violating decays of vector quarkonia and of the Z boson , 2015, 1503.04159.

[61]  S. Antusch,et al.  Testing sterile neutrino extensions of the Standard Model at future lepton colliders , 2015, 1502.05915.

[62]  M. Drewes,et al.  Experimental and cosmological constraints on heavy neutrinos , 2015 .

[63]  Medhat H. M. Elsayed,et al.  CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector , 2015 .

[64]  S. Monteil,et al.  Indirect searches for sterile neutrinos at a high-luminosity Z-factory , 2014, 1412.6322.

[65]  A. Blondel,et al.  Search for Heavy Right Handed Neutrinos at the FCC-ee , 2014, 1411.5230.

[66]  M. Laine,et al.  Right-handed neutrino production rate at T > 160 GeV , 2014, 1411.1765.

[67]  T. Schwetz,et al.  Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.

[68]  M. Drewes,et al.  Probing leptogenesis with GeV-scale sterile neutrinos at LHCb and BELLE II , 2014, 1404.7114.

[69]  M. D’Onofrio,et al.  Sphaleron rate in the minimal standard model. , 2014, Physical review letters.

[70]  B. Garbrecht More viable parameter space for leptogenesis , 2014, 1401.3278.

[71]  B. Shuve,et al.  Baryogenesis through Neutrino Oscillations: A Unified Perspective , 2014, 1401.2459.

[72]  J. Helo,et al.  Heavy neutrino searches at the LHC with displaced vertices , 2013, 1312.2900.

[73]  M. Campanelli,et al.  First look at the physics case of TLEP , 2013, 1308.6176.

[74]  M. Thomson,et al.  Pandora Particle Flow Algorithm , 2013, 1308.4537.

[75]  M. Laine Thermal right-handed neutrino production rate in the relativistic regime , 2013, 1307.4909.

[76]  V. Khoze,et al.  Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal , 2013, Journal of High Energy Physics.

[77]  M. Gonzalez-Garcia,et al.  New ways to TeV scale leptogenesis , 2013, 1305.6312.

[78]  M. Drewes The Phenomenology of Right Handed Neutrinos , 2013, 1303.6912.

[79]  P. Schwaller,et al.  Scattering Rates For Leptogenesis: Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos , 2013, 1303.5498.

[80]  S. Iso,et al.  TeV-scale B − L model with a flat Higgs potential at the Planck scale: In view of the hierarchy problem , 2012, 1210.2848.

[81]  M. Shaposhnikov,et al.  Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos , 2012, 1208.4607.

[82]  N. Okada,et al.  Inverse seesaw neutrino signatures at the LHC and ILC , 2012, 1207.3734.

[83]  M. Drewes,et al.  Leptogenesis from a GeV seesaw without mass degeneracy , 2012, 1206.5537.

[84]  Mikhail Shaposhnikov,et al.  Sterile neutrinos as the origin of dark and baryonic matter. , 2012, Physical review letters.

[85]  P. S. Bhupal Dev,et al.  Bounds on TeV seesaw models from LHC Higgs data , 2012, 1207.2756.

[86]  J. Kamenik,et al.  Minimal lepton flavor violating realizations of minimal seesaw models , 2012, 1205.5547.

[87]  M. Peña,et al.  Leptogenesis with small violation of B−L , 2012, 1205.1948.

[88]  M. Shaposhnikov,et al.  Matter and antimatter in the universe , 2012, 1204.4186.

[89]  Yuta Orikasa The classically conformal B-L extended standard model , 2012 .

[90]  D. Bodeker,et al.  Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results , 2012, 1202.1288.

[91]  P. S. Bhupal Dev,et al.  Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos , 2011, 1112.6419.

[92]  B. Garbrecht,et al.  Effective theory of Resonant Leptogenesis in the Closed-Time-Path approach , 2011, 1112.5954.

[93]  O. Ruchayskiy,et al.  Experimental bounds on sterile neutrino mixing angles , 2011, 1112.3319.

[94]  M. Laine,et al.  Thermal right-handed neutrino production rate in the non-relativistic regime , 2011, 1112.1205.

[95]  M. Herranen,et al.  Flavoured quantum Boltzmann equations from cQPA , 2011, 1108.2309.

[96]  S. Petcov,et al.  Low energy signatures of the TeV scale seesaw mechanism , 2011, 1103.6217.

[97]  T. Asaka,et al.  Mixing of active and sterile neutrinos , 2011, 1101.1382.

[98]  A. Anisimov,et al.  Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering , 2010, 1012.3784.

[99]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[100]  S. T. Petcov,et al.  TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν-decay , 2010, 1007.2378.

[101]  M. Shaposhnikov,et al.  Baryon Asymmetry of the Universe in the NuMSM , 2010, 1006.0133.

[102]  M. B. Gavela,et al.  Minimal flavour seesaw models , 2010 .

[103]  V. P. Efrosinin,et al.  What are the Neutrino Masses , 2009 .

[104]  E. Tassi,et al.  Measurement of J/psi helicity distributions in inelastic photoproduction at HERA , 2009 .

[105]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[106]  J. A. Aguilar-Saavedra,et al.  Distinguishing seesaw models at LHC with multi-lepton signals , 2008, 0808.2468.

[107]  T. Asaka,et al.  Leptogenesis with an almost conserved lepton number , 2008, 0810.3015.

[108]  M. Shaposhnikov The nuMSM, leptonic asymmetries, and properties of singlet fermions , 2008, 0804.4542.

[109]  M. Shaposhnikov,et al.  Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry , 2008, 0804.4543.

[110]  M. B. Gavela,et al.  Low energy effects of neutrino masses , 2007, 0707.4058.

[111]  A. Smirnov,et al.  Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation , 2007, 0705.3221.

[112]  D. Gorbunov,et al.  Erratum and Addendum to: How to find neutral leptons of the νMSM? , 2013, Journal of High Energy Physics.

[113]  M. Shaposhnikov A possible symmetry of the νMSM , 2006, hep-ph/0605047.

[114]  J W F Valle,et al.  Supersymmetric SO10 seesaw mechanism with low B-L scale. , 2005, Physical review letters.

[115]  V. Cirigliano,et al.  Minimal flavor violation in the lepton sector , 2005, hep-ph/0507001.

[116]  J. Romão,et al.  Supersymmetric SO10 seesaw mechanism with low B-L scale. , 2005, Physical review letters.

[117]  T. Asaka,et al.  The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.

[118]  T. Asaka,et al.  The nuMSM, dark matter and neutrino masses , 2005, hep-ph/0503065.

[119]  A. Gouvea Seesaw energy scale and the LSND anomaly , 2005, hep-ph/0501039.

[120]  S. Barr New type of seesaw mechanism for neutrino masses. , 2004, Physical review letters.

[121]  M. Raidal,et al.  Towards a complete theory of thermal leptogenesis in the SM and MSSM , 2003, hep-ph/0310123.

[122]  A. Pilaftsis,et al.  Resonant Leptogenesis , 2003, hep-ph/0309342.

[123]  S. Barr,et al.  New type of seesaw mechanism for neutrino masses. , 2003, Physical review letters.

[124]  A. Ibarra,et al.  A Lower bound on the right-handed neutrino mass from leptogenesis , 2002, hep-ph/0202239.

[125]  P. Minkowski /a ~ E~/at a Rate of One out of 10 9 Muon Decays? , 2002 .

[126]  W. Buchmuller,et al.  Spectator processes and baryogenesis , 2001, hep-ph/0104189.

[127]  J. Casas,et al.  Oscillating neutrinos and ? e, ? , 2001, hep-ph/0103065.

[128]  T. Ohl O’Mega: An optimizing matrix element generator , 2000, hep-ph/0102195.

[129]  E. Halyo Supergravity on $AdS_{4/7} \times S^{7/4}$ and M Branes , 1998, hep-th/9803077.

[130]  V. Rubakov,et al.  Baryogenesis via neutrino oscillations , 1998, hep-ph/9803255.

[131]  E. Vallazza,et al.  Search for neutral heavy leptons produced in Z decays , 1997 .

[132]  J. Valle,et al.  Dynamical left-right symmetry breaking. , 1995, Physical review. D, Particles and fields.

[133]  J. Valle,et al.  Left-right symmetry breaking in NJL approach , 1995, hep-ph/9507275.

[134]  G. Raffelt,et al.  General kinetic description of relativistic mixed neutrinos , 1993 .

[135]  A. Pilaftsis Radiatively induced neutrino masses and large Higgs-neutrino couplings in the Standard Model with Majorana fields , 1992, hep-ph/9901206.

[136]  A. G. Frodesen,et al.  Searches for heavy neutrinos from Z decays , 1992 .

[137]  J. Valle,et al.  Fast decaying neutrinos and observable flavour violation in a new class of Majoron models , 1989 .

[138]  Hu,et al.  Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. , 1988, Physical review. D, Particles and fields.

[139]  J. Bernabéu,et al.  Lepton flavour non-conservation at high energies in a superstring inspired standard model , 1987 .

[140]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[141]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[142]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[143]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[144]  M. Gronau,et al.  Extending Limits on Neutral Heavy Leptons , 1984 .

[145]  L. Okun VIOLATION OF CP INVARIANCE. , 1984 .

[146]  Lincoln Wolfenstein,et al.  Massless neutrinos in left-hand symmetric models , 1983 .

[147]  J. Valle,et al.  Neutrino decay and spontaneous violation of lepton number , 1982 .

[148]  José W. F. Valle,et al.  Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .

[149]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[150]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[151]  T. Yanagida,et al.  Horizontal Symmetry and Masses of Neutrinos , 1980 .

[152]  A. Sakharov Baryon asymmetry of the universe , 1979 .

[153]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[154]  N. S. Barnett,et al.  Private communication , 1969 .

[155]  Andrej Dmitrievich Sakharov,et al.  SPECIAL ISSUE: Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe , 1991 .

[156]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[157]  J. Schwinger Brownian Motion of a Quantum Oscillator , 1961 .