Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain

[1]  Y. Surdin-Kerjan,et al.  MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. , 1992, Molecular and cellular biology.

[2]  A. Matouschek,et al.  ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. , 2001, Molecular cell.

[3]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[4]  A. Haas,et al.  A ubiquitin mutant with specific defects in DNA repair and multiubiquitination , 1995, Molecular and cellular biology.

[5]  M. Tyers,et al.  Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. , 2002, Molecular cell.

[6]  M. Tyers,et al.  Feedback‐regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex , 2000, The EMBO journal.

[7]  J. Yates,et al.  Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. , 1998, Analytical biochemistry.

[8]  G. Dittmar,et al.  Cell Cycle–Regulated Modification of the Ribosome by a Variant Multiubiquitin Chain , 2000, Cell.

[9]  Zhijian J. Chen,et al.  TAK1 is a ubiquitin-dependent kinase of MKK and IKK , 2001, Nature.

[10]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[11]  S. Reed,et al.  Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Metabolism of sulfur amino acids in Saccharomyces cerevisiae. , 1997, Microbiology and molecular biology reviews : MMBR.

[13]  John I. Clark,et al.  Shotgun identification of protein modifications from protein complexes and lens tissue , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Deshaies,et al.  Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. , 2003, Molecular cell.

[15]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[16]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[17]  M. Tyers,et al.  SCFMet30‐mediated control of the transcriptional activator Met4 is required for the G1–S transition , 2000 .

[18]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[19]  M. Muratani,et al.  How the ubiquitin–proteasome system controls transcription , 2003, Nature Reviews Molecular Cell Biology.

[20]  Janina Maier,et al.  Guide to yeast genetics and molecular biology. , 1991, Methods in enzymology.

[21]  Y. Surdin-Kerjan,et al.  Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. , 1992, Genetics.

[22]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[23]  M. Hochstrasser Ubiquitin-dependent protein degradation. , 1996, Annual review of genetics.

[24]  J. Roth,et al.  Multiple Lysine Mutations in the C-Terminal Domain of p53 Interfere with MDM2-Dependent Protein Degradation and Ubiquitination , 2000, Molecular and Cellular Biology.

[25]  G. Dittmar,et al.  Proteasome subunit Rpn1 binds ubiquitin-like protein domains , 2002, Nature Cell Biology.

[26]  G. Fink,et al.  Regulated degradation of the transcription factor Gcn4. , 1994, The EMBO journal.

[27]  S. Reed,et al.  Regulation of Transcription by Ubiquitination without Proteolysis Cdc34/SCFMet30-Mediated Inactivation of the Transcription Factor Met4 , 2000, Cell.

[28]  Joshua D. Schnell,et al.  Non-traditional Functions of Ubiquitin and Ubiquitin-binding Proteins* , 2003, Journal of Biological Chemistry.

[29]  Larry A Sklar,et al.  Release of Ubiquitin-Charged Cdc34-S∼Ub from the RING Domain Is Essential for Ubiquitination of the SCFCdc4-Bound Substrate Sic1 , 2003, Cell.

[30]  R. Deshaies,et al.  A Proteasome Howdunit The Case of the Missing Signal , 2000, Cell.

[31]  M. Tyers,et al.  SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. , 2000, The EMBO journal.