Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making

The notion of interval-valued intuitionistic fuzzy set IVIFS is a generalization of that of Atanassov's intuitionistic fuzzy set AIFS. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. In this paper, we define some Einstein operations on IVIFS and develop three arithmetic averaging operators, such as the interval-valued intuitionistic fuzzy Einstein weighted averaging IVIFWAe operator, interval-valued intuitionistic fuzzy Einstein ordered weighted averaging IVIFOWAe operator, and interval-valued intuitionistic fuzzy Einstein hybrid weighted averaging IVIFHWAe operator, for aggregating interval-valued intuitionistic fuzzy information. The IVIFHWAe operator generalizes both the IVIFWAe and IVIFOWAe operators. Moreover, we establish various properties of these operators and derive the relationship between the proposed operators and the exiting aggregation operators. Finally, we apply the IVIFHWAe operator to multiple attribute decision making with interval-valued intuitionistic fuzzy information.

[1]  Deng-Feng Li,et al.  TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making With Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[2]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[3]  Weize Wang,et al.  Intuitionistic fuzzy geometric aggregation operators based on einstein operations , 2011, Int. J. Intell. Syst..

[4]  Humberto Bustince,et al.  Structures on intuitionistic fuzzy relations , 1996, Fuzzy Sets Syst..

[5]  Zeshui Xu,et al.  Clustering algorithm for intuitionistic fuzzy sets , 2008, Inf. Sci..

[6]  Guiwu Wei,et al.  Grey Relational Analysis Method for Interval-Valued Intuitionistic Fuzzy Multiple Attribute Decision Making , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[7]  Jun Ye,et al.  Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment , 2009, Expert Syst. Appl..

[8]  Z. Xu,et al.  Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making , 2007 .

[9]  Jong-Wuu Wu,et al.  Correlation of intuitionistic fuzzy sets by centroid method , 2002, Inf. Sci..

[10]  Zeshui Xu,et al.  Induced generalized intuitionistic fuzzy operators , 2011, Knowl. Based Syst..

[11]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[12]  Z. S. Xu,et al.  An Overview of Distance and Similarity Measures of Intuitionistic Fuzzy Sets , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Jian Jhen Chen,et al.  Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices , 2007 .

[14]  Dug Hun Hong,et al.  A note on correlation of interval-valued intuitionistic fuzzy sets , 1998, Fuzzy Sets Syst..

[15]  Weize Wang,et al.  Comments on "Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment" by Jun Ye , 2011, Expert Syst. Appl..

[16]  Humberto Bustince,et al.  Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning , 2000, Fuzzy Sets Syst..

[17]  Zeshui Xu,et al.  Recent advances in intuitionistic fuzzy information aggregation , 2010, Fuzzy Optim. Decis. Mak..

[18]  J. Goguen L-fuzzy sets , 1967 .

[19]  Humberto Bustince,et al.  Correlation of interval-valued intuitionistic fuzzy sets , 1995, Fuzzy Sets Syst..

[20]  Zeshui Xu,et al.  On Geometric Aggregation over Interval-Valued Intuitionistic Fuzzy Information , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[21]  Guiwu Wei,et al.  Induced Interval-Valued Intuitionistic Fuzzy OWG Operator , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[22]  Zeshui Xu,et al.  On Correlation Measures of Intuitionistic Fuzzy Sets , 2006, IDEAL.

[23]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[24]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[25]  José M. Merigó,et al.  A unified model between the weighted average and the induced OWA operator , 2011, Expert Syst. Appl..

[26]  Glad Deschrijver,et al.  Arithmetic operators in interval-valued fuzzy set theory , 2007, Inf. Sci..

[27]  Deng-Feng Li,et al.  Linear programming method for MADM with interval-valued intuitionistic fuzzy sets , 2010, Expert Syst. Appl..

[28]  Glad Deschrijver,et al.  Generalized arithmetic operations in interval-valued fuzzy set theory , 2005, J. Intell. Fuzzy Syst..

[29]  Xiaodong Liu,et al.  Entropy and Subsethood for General Interval-Valued Intuitionistic Fuzzy Sets , 2005, FSKD.

[30]  Theresa Beaubouef,et al.  Uncertainty modeling for database design using intuitionistic and rough set theory , 2009, J. Intell. Fuzzy Syst..

[31]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[32]  Weize Wang,et al.  Intuitionistic Fuzzy Information Aggregation Using Einstein Operations , 2012, IEEE Transactions on Fuzzy Systems.

[33]  Zeshui Xu,et al.  Intuitionistic Fuzzy Bonferroni Means , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[35]  Fu-Gui Shi,et al.  L-fuzzy numbers and their properties , 2008, Inf. Sci..

[36]  Humberto Bustince,et al.  On averaging operators for Atanassov's intuitionistic fuzzy sets , 2011, Inf. Sci..

[37]  I. Turksen Interval valued fuzzy sets based on normal forms , 1986 .

[38]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[39]  Etienne Kerre,et al.  A generalization of operators on intuitionistic fuzzy sets using triangular norms and conorms , 2002 .

[40]  Guiwu Wei,et al.  Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision-making with incomplete weight information , 2009, Knowledge and Information Systems.

[41]  Deng-Feng Li,et al.  Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information , 2011, Appl. Soft Comput..

[42]  Radko Mesiar,et al.  Triangular norms. Position paper I: basic analytical and algebraic properties , 2004, Fuzzy Sets Syst..

[43]  Deng-Feng Li,et al.  Mathematical-Programming Approach to Matrix Games With Payoffs Represented by Atanassov's Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[44]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[45]  S. K. Samanta,et al.  Topology of interval-valued intuitionistic fuzzy sets , 2001, Fuzzy Sets Syst..

[46]  Zeshui Xu,et al.  Dynamic intuitionistic fuzzy multi-attribute decision making , 2008, Int. J. Approx. Reason..

[47]  G. Wei,et al.  Some Geometric Aggregation Operators Based on Interval-Valued Intuitionistic Fuzzy Sets and their Application to Group Decision Making , 2007 .

[48]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[49]  Tamalika Chaira Intuitionistic fuzzy color clustering of human cell images on different color models , 2012, J. Intell. Fuzzy Syst..

[50]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[51]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[52]  A. I. Ölçer,et al.  A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem , 2005, Eur. J. Oper. Res..

[53]  Guiwu Wei,et al.  Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making , 2010, Appl. Soft Comput..

[54]  Zhou-Jing Wang,et al.  An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights , 2009, Inf. Sci..

[55]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[56]  Zeshui Xu,et al.  Alternative form of Dempster's rule for binary variables: Research Articles , 2005 .

[57]  Etienne E. Kerre,et al.  On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision , 2007, Inf. Sci..

[58]  K. Atanassov Operators over interval valued intuitionistic fuzzy sets , 1994 .