The Spur and the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo

We present a model for the interaction of the GD-1 stellar stream with a massive perturber that naturally explains many of the observed stream features, including a gap and an off-stream spur of stars. The model involves an impulse by a fast encounter, after which the stream grows a loop of stars at different orbital energies. At specific viewing angles, this loop appears offset from the stream track. A quantitative comparison of the spur and gap features prefers models where the perturber is in the mass range of $10^6\,\rm M_\odot$ to $10^8\,\rm M_\odot$. Orbit integrations back in time show that the stream encounter could not have been caused by any known globular cluster or dwarf galaxy with a determined orbit, and mass, size and impact-parameter arguments show that it could not have been caused by a molecular cloud in the Milky Way disk. The most plausible explanation for the gap-and-spur structure is an encounter with a dark-matter substructure, like those predicted to populate galactic halos in LCDM cosmology. However, the expected densities of LCDM subhalos in this mass range and in this part of the Milky Way are $2-3\,\sigma$ lower than the inferred density of the GD-1 perturber. This observation opens up the possibility that detailed observations of streams could measure the mass spectrum of dark-matter substructures and even identify individual substructures and their orbits in the Galactic halo.

[1]  K. Johnston,et al.  Stellar disc streams as probes of the Galactic potential and satellite impacts , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[3]  Uncovering cold dark matter halo substructure with tidal streams , 2001, astro-ph/0110690.

[4]  L. Watkins,et al.  Hunting for the Dark Matter Wake Induced by the Large Magellanic Cloud , 2019, The Astrophysical Journal.

[5]  M. Hilker,et al.  A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters , 2018, 1804.08359.

[6]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[7]  Adrian M. Price-Whelan,et al.  Off the Beaten Path: Gaia Reveals GD-1 Stars outside of the Main Stream , 2018, The Astrophysical Journal.

[8]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[9]  R. Carlberg,et al.  DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS , 2011, 1109.6022.

[10]  J. Bovy,et al.  Effects of baryonic and dark matter substructure on the Pal 5 stream , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  N. Weiner,et al.  Halometry from astrometry , 2018, Journal of Cosmology and Astroparticle Physics.

[12]  J. Peñarrubia,et al.  The effect of a disc on the population of cuspy and cored dark matter substructures in Milky Way-like galaxies , 2016, 1608.01849.

[13]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[14]  C. Firmani,et al.  The Dependence on Environment of Cold Dark Matter Halo Properties , 2005, astro-ph/0508053.

[15]  A. Helmi,et al.  Gaia Data Release 2Kinematics of globular clusters and dwarfgalaxies around the Milky Way , 2018, 1804.09381.

[16]  Tidal Streams as Probes of the Galactic Potential , 1998, astro-ph/9807243.

[17]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[18]  Sergey E. Koposov,et al.  A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique , 2016, Monthly Notices of the Royal Astronomical Society.

[19]  D. Heggie,et al.  Tidal tails of star clusters , 2009, 0909.2619.

[20]  V. Belokurov,et al.  Dipping our toes in the water: first models of GD-1 as a stream , 2015, 1502.00484.

[21]  The orbit and mass of the Sagittarius dwarf galaxy , 1999, astro-ph/9908025.

[22]  V. Springel,et al.  SUBSTRUCTURE DEPLETION IN THE MILKY WAY HALO BY THE DISK , 2009, 0907.3482.

[23]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[24]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[25]  K. Johnston,et al.  Footprints of the Sagittarius dwarf galaxy in the Gaia data set , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[27]  Sergey E. Koposov,et al.  The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  M. Kaplinghat,et al.  Diversity in density profiles of self-interacting dark matter satellite halos , 2019, Journal of Cosmology and Astroparticle Physics.

[29]  J. Binney,et al.  Stream–orbit misalignment – I. The dangers of orbit-fitting , 2013, 1305.1935.

[30]  Sergey E. Koposov,et al.  Modelling the Tucana III stream - a close passage with the LMC , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  V. Belokurov,et al.  Forensics of Subhalo-Stream Encounters: The Three Phases of Gap Growth , 2014, 1412.6035.

[32]  S. White,et al.  Gaps in globular cluster streams: giant molecular clouds can cause them too , 2016, 1606.02715.

[33]  J. Read,et al.  Constraining the Milky Way halo shape using thin streams , 2013, 1308.2235.

[34]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[35]  F. Prada,et al.  Characterization of subhalo structural properties and implications for dark matter annihilation signals , 2016, 1603.04057.

[36]  B. Diemer,et al.  An Accurate Physical Model for Halo Concentrations , 2018, The Astrophysical Journal.

[37]  D. Hogg,et al.  CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES , 2010, 1012.2884.

[38]  D. Heggie,et al.  More on the structure of tidal tails , 2011, 1111.5013.

[39]  D. D. Carpintero,et al.  AND YET IT MOVES: THE DANGERS OF ARTIFICIALLY FIXING THE MILKY WAY CENTER OF MASS IN THE PRESENCE OF A MASSIVE LARGE MAGELLANIC CLOUD , 2014, 1408.4128.

[40]  D. Hogg,et al.  Chaotic dispersal of tidal debris , 2015, 1507.08662.

[41]  J. Orosz,et al.  Dynamical evidence for a black hole in the eclipsing X-ray nova GRO J1655 – 40 , 1995, Nature.

[42]  D. Hogg,et al.  MILKY WAY MASS AND POTENTIAL RECOVERY USING TIDAL STREAMS IN A REALISTIC HALO , 2014, 1406.6063.

[43]  D. Spergel,et al.  How Lumpy Is the Milky Way’s Dark Matter Halo? , 2001, astro-ph/0111196.

[44]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[45]  M. Hilker,et al.  Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived fromGaiaDR2 data , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  J. Bovy,et al.  The number and size of subhalo-induced gaps in stellar streams , 2016, 1606.04946.

[47]  J. Simon,et al.  Gaia Proper Motions and Orbits of the Ultra-faint Milky Way Satellites , 2018, The Astrophysical Journal.

[48]  P. Hopkins,et al.  Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies , 2017, 1701.03792.

[49]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[50]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[51]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[52]  R. Nichol,et al.  Stellar Streams Discovered in the Dark Energy Survey , 2018, The Astrophysical Journal.

[53]  V. Belokurov,et al.  Properties of dark subhaloes from gaps in tidal streams , 2015, 1507.05625.

[54]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[55]  N. Martin,et al.  FEELING THE PULL: A STUDY OF NATURAL GALACTIC ACCELEROMETERS. I. PHOTOMETRY OF THE DELICATE STELLAR STREAM OF THE PALOMAR 5 GLOBULAR CLUSTER , 2015, 1512.03054.

[56]  Sergey E. Koposov,et al.  A deeper look at the GD1 stream: density variations and wiggles , 2018, 1801.08948.

[57]  E. K. Grebel,et al.  Modeling the Disruption of the Globular Cluster Palomar 5 by Galactic Tides , 2004 .

[58]  M. Buckley,et al.  Gravitational probes of dark matter physics , 2017, Physics Reports.

[59]  D. Lang,et al.  The DECam Plane Survey: Optical Photometry of Two Billion Objects in the Southern Galactic Plane , 2017, 1710.01309.

[60]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[61]  Gurtina Besla,et al.  A timing constraint on the (total) mass of the Large Magellanic Cloud , 2015, 1507.03594.

[62]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[63]  M. Miville-Deschênes,et al.  PHYSICAL PROPERTIES OF MOLECULAR CLOUDS FOR THE ENTIRE MILKY WAY DISK , 2016, 1610.05918.

[64]  John E. Carlstrom,et al.  DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81 , 2016, 1601.01388.

[65]  Adrian M. Price-Whelan,et al.  Gala: A Python package for galactic dynamics , 2017, J. Open Source Softw..

[66]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[67]  Italy.,et al.  Obscured clusters. II. GLIMPSE-C02 - A new metal rich globular cluster in the Milky Way , 2008, 0808.1565.

[68]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[69]  D. Hooper,et al.  On The gamma-ray emission from Reticulum II and other dwarf galaxies , 2015, 1503.06209.

[70]  N. Martin,et al.  Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue , 2018, Monthly Notices of the Royal Astronomical Society.

[71]  A. Kravtsov,et al.  A UNIVERSAL MODEL FOR HALO CONCENTRATIONS , 2014, 1407.4730.

[72]  J. Bovy,et al.  THE SHAPE OF THE INNER MILKY WAY HALO FROM OBSERVATIONS OF THE PAL 5 AND GD–1 STELLAR STREAMS , 2016, 1609.01298.

[73]  M. Valluri,et al.  Signatures of ΛCDM Substructure in Tidal Debris , 2007, 0710.0385.

[74]  University of Edinburgh,et al.  On the structure of tidal tails , 2008, 0804.2476.

[75]  DETECTION OF A 63 COLD STELLAR STREAM IN THE SLOAN DIGITAL SKY SURVEY , 2006, astro-ph/0604332.

[76]  D. Hogg,et al.  The Information Content in Cold Stellar Streams , 2018, 1804.06854.

[77]  David W. Hogg,et al.  Globular Cluster Streams as Galactic High-Precision Scales - The Poster Child Palomar 5 , 2015 .

[78]  M. Fardal,et al.  Generation of mock tidal streams , 2014, 1410.1861.

[79]  E. Bica,et al.  Structural parameters of 11 faint Galactic globular clusters derived with 2MASS , 2007, 0711.1434.

[80]  H. Rix,et al.  SPENDING TOO MUCH TIME AT THE GALACTIC BAR: CHAOTIC FANNING OF THE OPHIUCHUS STREAM , 2016, 1601.06790.

[81]  Jeffrey L. Carlin,et al.  Stellar Streams and Clouds in the Galactic Halo , 2016, 1603.08936.

[82]  A. Price-Whelan,et al.  Gaps and length asymmetry in the stellar stream Palomar 5 as effects of Galactic bar rotation , 2017, 1703.04627.

[83]  J. Bovy,et al.  Searching for the GD-1 stream progenitor inGaiaDR2 with directN-body simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[84]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[85]  Daniel Foreman-Mackey,et al.  Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.

[86]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[87]  J. Peñarrubia Fluctuations of the gravitational field generated by a random population of extended substructures , 2017, 1710.06443.

[88]  S. Majewski,et al.  HUBBLE SPACE TELESCOPE PROPER MOTIONS OF INDIVIDUAL STARS IN STELLAR STREAMS: ORPHAN, SAGITTARIUS, LETHE, AND THE NEW “PARALLEL STREAM” , 2016, 1611.02282.

[89]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[90]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[91]  C. Grillmair,et al.  GAPS IN THE GD-1 STAR STREAM , 2013, 1303.4342.