Whispering-gallery mode microcavity quantum-dot lasers

This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed.

[1]  Lord Rayleigh,et al.  CXII. The problem of the whispering gallery , 1910 .

[2]  W. L. Bond,et al.  Stimulated Emission into Optical Whispering Modes of Spheres , 1961 .

[3]  E. Marcatili Bends in optical dielectric guides , 1969 .

[4]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[5]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[6]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[7]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[8]  Tawee Tanbun-Ek,et al.  Room temperature operation of microdisc lasers with submilliamp threshold current , 1992 .

[9]  Umar Mohideen,et al.  Threshold characteristics of semiconductor microdisk lasers , 1993 .

[10]  Vernon,et al.  Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. , 1994, Physical review. B, Condensed matter.

[11]  D. Weiss,et al.  Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. , 1995, Optics letters.

[12]  N. Ledentsov,et al.  Low-threshold injection lasers based on vertically coupled quantum dots , 1997 .

[13]  A. Sakai,et al.  Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 /spl mu/m , 1997, IEEE Photonics Technology Letters.

[14]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[15]  S. Chu,et al.  Surface-roughness-induced contradirectional coupling in ring and disk resonators. , 1997, Optics letters.

[16]  K. Inoshita,et al.  Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser , 1998 .

[17]  H. Grothe,et al.  Hybrid mirror VCSEL with sub-100 /spl mu/A threshold current emitting at 850 nm wavelength , 1998 .

[18]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[19]  Christophe Dupuis,et al.  High-Q wet-etched GaAs microdisks containing InAs quantum boxes , 1999 .

[20]  Peter Michler,et al.  Laser emission from quantum dots in microdisk structures , 2000 .

[21]  Hui Cao,et al.  Optically pumped InAs quantum dot microdisk lasers , 2000 .

[22]  Andreas Stintz,et al.  Low-threshold quantum dot lasers with 201 nm tuning range , 2000 .

[23]  Y. Kokubun,et al.  GaInAsP Microdisk Injection Laser with Benzocyclobutene Polymer Cladding and Its Athermal Effect , 2002 .

[24]  Dennis G. Deppe,et al.  The role of p-type doping and the density of states on the modulation response of quantum dot lasers , 2002 .

[25]  Nikolai N. Ledentsov,et al.  High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser , 2003 .

[26]  A. R. Kovsh,et al.  LETTER TO THE EDITOR: High performance narrow stripe quantum-dot lasers with etched waveguide , 2003 .

[27]  D. Deppe,et al.  Microdisks with quantum dot active regions lasing near 1300 nm at room-temperature , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[28]  Nikolai N. Ledentsov,et al.  Epitaxy of Nanostructures , 2003 .

[29]  E. Hu,et al.  Lasing from InGaAs quantum dots in an injection microdisk , 2003 .

[30]  Oskar Painter,et al.  Rayleigh scattering, mode coupling, and optical loss in silicon microdisks , 2004 .

[31]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[32]  S. Iwamoto,et al.  Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature , 2004 .

[33]  Yasuhiko Arakawa,et al.  Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. , 2005, Optics express.

[34]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[35]  Luke F. Lester,et al.  Highly unidirectional InAs∕InGaAs∕GaAs quantum-dot ring lasers , 2005 .

[36]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[37]  Wilson Sibbett,et al.  High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser , 2005 .

[38]  A. Stintz,et al.  Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots , 2004, quant-ph/0412085.

[39]  Sadao Adachi,et al.  Properties of Aluminum Gallium Arsenide , 2005 .

[40]  Vladimir S. Ilchenko,et al.  Ultrahigh optical Q factors of crystalline resonators in the linear regime , 2006 .

[41]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[42]  L. O'Faolain,et al.  Reduced surface sidewall recombination and diffusion in quantum-dot lasers , 2006, IEEE Photonics Technology Letters.

[43]  A. R. Kovsh,et al.  Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser , 2007 .

[44]  S. Mikhrin,et al.  Quantum dot laser with 75 nm broad spectrum of emission. , 2007, Optics letters.

[45]  T. Sugaya,et al.  Laser Characteristics of 1.3-$\mu$m Quantum Dots Laser With High-Density Quantum Dots , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[47]  M. Hopkinson,et al.  Whispering gallery resonances in semiconductor micropillars , 2007 .

[48]  M. Lipson,et al.  Compact bandwidth tunable microring resonators , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[49]  D. Deppe,et al.  Very low threshold current density continuous-wave quantum dot laser diode , 2008, 2008 IEEE 21st International Semiconductor Laser Conference.

[50]  L. Di Cioccio,et al.  A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks , 2008, IEEE Photonics Technology Letters.

[51]  L. Di Cioccio,et al.  Electrically injected InP microdisk lasers integrated with nanophotonic SOI circuits , 2008, SPIE OPTO.

[52]  Mikhail V. Maximov,et al.  A 1.33 µm InAs/GaAs quantum dot laser with a 46 cm−1 modal gain , 2008 .

[53]  M.K. Smit,et al.  InAs–InP (1.55- $\mu$m Region) Quantum-Dot Microring Lasers , 2008, IEEE Photonics Technology Letters.

[54]  Dennis G. Deppe,et al.  Quantum dot laser diode with low threshold and low internal loss , 2009 .

[55]  Mikhail V. Maximov,et al.  Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s , 2009 .

[56]  Sergey Mikhrin,et al.  A single comb laser source for short reach WDM interconnects , 2009, OPTO.

[57]  Romi Shamai,et al.  On chip tunable micro ring resonator actuated by electrowetting. , 2009, Optics express.

[58]  Xuezhe Zheng,et al.  Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. , 2009, Optics express.

[59]  P. Bhattacharya,et al.  High performance tunnel injection quantum dot comb laser , 2010 .

[60]  M.-H. Mao,et al.  Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission. , 2011, Optics express.

[61]  P. Moser,et al.  81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects , 2011 .

[62]  Véronique Bardinal,et al.  Collective Micro-Optics Technologies for VCSEL Photonic Integration , 2011 .

[63]  Di Liang,et al.  Low Threshold Electrically-Pumped Hybrid Silicon Microring Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  Alexey E. Zhukov,et al.  Quantum dot lasers and relevant nanoheterostructures , 2012, Photonics Asia.

[65]  M. Kamp,et al.  Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes , 2012, ISLC 2012 International Semiconductor Laser Conference.

[66]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs with 28 GHz modulation bandwidth , 2012, CLEO 2015.

[67]  A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers , 2013 .

[68]  M. Vitiello,et al.  Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range , 2013 .