Diagonally convex directed polyominoes and even trees: a bijection and related issues
暂无分享,去创建一个
[1] Marc Noy,et al. Statistics on non-crossing trees , 2002, Discret. Math..
[2] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[3] Philippe Flajolet,et al. Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..
[4] P. Leroux,et al. Enumeration of Symmetry Classes of Convex Polyominoes in the Square Lattice , 1998, math/9803130.
[5] Marc Noy,et al. Enumeration of noncrossing trees on a circle , 1998, Discret. Math..
[6] Svjetlan Feretic,et al. Combinatorics of diagonally convex directed polyominoes , 1996, Discret. Math..
[7] Mireille Bousquet-Mélou,et al. Percolation Models and Animals , 1996, Eur. J. Comb..
[8] Philippe Flajolet,et al. An introduction to the analysis of algorithms , 1995 .
[9] Neil J. A. Sloane,et al. The encyclopedia of integer sequences , 1995 .
[10] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[11] Serge Dulucq,et al. Cordes, arbres et permutations , 1993, Discret. Math..
[12] P. Hilton,et al. Catalan Numbers, Their Generalization, and Their Uses , 1991 .
[13] J. A. Eidswick. Short factorizations of permutations into transpositions , 1989, Discret. Math..
[14] Johann Cigler,et al. Some Remarks on Catalan Families , 1987, Eur. J. Comb..
[15] L. Carlitz. Enumeration of two-line arrays , 1973 .