Effect of mechanical denaturation on surface free energy of protein powders.

[1]  A. Narang,et al.  Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders. , 2015, International journal of pharmaceutics.

[2]  Wei He,et al.  Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. , 2015, International journal of pharmaceutics.

[3]  R. Forbes,et al.  Mapping the solid-state properties of crystalline lysozyme during pharmaceutical unit-operations. , 2015, Journal of pharmaceutical and biomedical analysis.

[4]  M. Mohammad An equation to calculate the actual methylene middle parameter as a function of temperature. , 2015, Journal of chromatography. A.

[5]  M. Mohammad Accuracy verification of surface energy components measured by inverse gas chromatography. , 2015, Journal of chromatography. A.

[6]  J. Carpenter,et al.  Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. , 2015, Analytical biochemistry.

[7]  Sungjoo Lee,et al.  Harnessing denatured protein for controllable bipolar doping of a monolayer graphene. , 2015, ACS applied materials & interfaces.

[8]  L. Kidder,et al.  Combined Dynamic Light Scattering and Raman Spectroscopy Approach for Characterizing the Aggregation of Therapeutic Proteins , 2014, Molecules.

[9]  Chinmay Ghoroi,et al.  Influence of surface modification on wettability and surface energy characteristics of pharmaceutical excipient powders. , 2014, International journal of pharmaceutics.

[10]  M. Mohammad Chromatographic adhesion law to simplify surface energy calculation. , 2013, Journal of chromatography. A.

[11]  M. A. Perillo,et al.  β-galactosidase at the membrane-water interface: a case of an active enzyme with non-native conformation. , 2013, Colloids and surfaces. B, Biointerfaces.

[12]  A. Moore,et al.  Compare and contrast the effects of surfactants (PluronicF-127 and CremophorEL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[13]  R. Davé,et al.  Passivation of high-surface-energy sites of milled ibuprofen crystals via dry coating for reduced cohesion and improved flowability. , 2013, Journal of pharmaceutical sciences.

[14]  D. Pozzo,et al.  Structural analysis of protein denaturation with alkyl perfluorinated sulfonates. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Subirade,et al.  Protein based tablets as reversible gelling systems for delayed release applications. , 2012, International journal of pharmaceutics.

[16]  Dawei Qi,et al.  A method for improving the calculation accuracy of acid-base constants by inverse gas chromatography. , 2012, Journal of chromatography. A.

[17]  P. Schmuki,et al.  Protein denaturation detected by time-of-flight secondary ion mass spectrometry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[18]  I. Larson,et al.  Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  P. Chakrabarti,et al.  Structure and activity of lysozyme on binding to ZnO nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  Q. Husain β Galactosidases and their potential applications: a review , 2010, Critical reviews in biotechnology.

[21]  A. Maio,et al.  Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study , 2008 .

[22]  Hossein Naderi-Manesh,et al.  Structural studies of hen egg-white lysozyme dimer: comparison with monomer. , 2008, Biochimica et biophysica acta.

[23]  A. Bernkop‐Schnürch,et al.  Preparation and evaluation of microparticles from thiolated polymers via air jet milling. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  S. Ueda,et al.  Detection of lot-to-lot variations in the amorphous microstructure of lyophilized protein formulations. , 2007, International journal of pharmaceutics.

[25]  Rebecca E. Hamlin,et al.  A QCM study of the immobilization of beta-galactosidase on polyelectrolyte surfaces: effect of the terminal polyion on enzymatic surface activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  A. Bernkop‐Schnürch,et al.  Evaluation of the potential of air jet milling of solid protein-poly(acrylate) complexes for microparticle preparation. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  M. García‐Garibay,et al.  Determination of the secondary structure of Kluyveromyces lactis beta-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. , 2005, Journal of agricultural and food chemistry.

[28]  C. Chatgilialoglu,et al.  Radiation damage of lysozyme in a biomimetic model: some insights by Raman spectroscopy , 2005 .

[29]  C. Volpe,et al.  The solid surface free energy calculation. I. In defense of the multicomponent approach. , 2004, Journal of colloid and interface science.

[30]  R. Dalby,et al.  Predicting the Quality of Powders for Inhalation from Surface Energy and Area , 2002, Pharmaceutical Research.

[31]  J. Berg,et al.  A review of the different techniques for solid surface acid-base characterization. , 2003, Advances in colloid and interface science.

[32]  J. Baardsnes,et al.  Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein. , 2002, Biochimica et biophysica acta.

[33]  O. Planinšek,et al.  The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements. , 2001, International journal of pharmaceutics.

[34]  T. Tsuda,et al.  Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH , 2001, Electrophoresis.

[35]  A. Renault,et al.  The protein net electric charge determines the surface rheological properties of ovalbumin adsorbed at the air–water interface , 2000 .

[36]  I. Lakatos,et al.  Colloids Surfaces A: Physicochem , 1998 .

[37]  M. Jurkiewicz-Herbich,et al.  The adsorption of amino acids from aqueous solutions surface and interfacial behaviour of tyrosine and serine , 1998 .

[38]  C. Volpe,et al.  Some Reflections on Acid-Base Solid Surface Free Energy Theories , 1997, Journal of colloid and interface science.

[39]  M. Vaney,et al.  High-resolution structure (1.33 A) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. , 1996, Acta crystallographica. Section D, Biological crystallography.

[40]  P. Privalov,et al.  Energetics of interactions of aromatic hydrocarbons with water. , 1994, Biophysical chemistry.

[41]  M. Chaudhury,et al.  Additive and nonadditive surface tension components and the interpretation of contact angles , 1988 .

[42]  L. Lavielle,et al.  The Role of the Interface in Carbon Fibre-Epoxy Composites , 1987 .

[43]  Peter J. Artymiuk,et al.  The Structures of the Monoclinic and Orthorhombic Forms of Hen Egg-White Lysozyme at 6 Angstroms Resolution , 1981 .

[44]  T. Horiuchi,et al.  Purification and Properties of β-Galactosidase from Aspergillus oryzae , 1975 .

[45]  J L Lippert,et al.  Laser Raman studies of conformational variations of poly‐L‐lysine , 1973, Biopolymers.