Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors

Most heritable behavioral traits have a complex genetic basis, but few multigenic traits are understood at a molecular level. Here we show that the C. elegans strains N2 and CB4856 have opposite behavioral responses to simultaneous changes in environmental O(2) and CO(2). We identify two quantitative trait loci (QTL) that affect this trait and map each QTL to a single-gene polymorphism. One gene, npr-1, encodes a previously described neuropeptide receptor whose high activity in N2 promotes CO(2) avoidance. The second gene, glb-5, encodes a neuronal globin domain protein whose high activity in CB4856 modifies behavioral responses to O(2) and combined O(2)/CO(2) stimuli. glb-5 acts in O(2)-sensing neurons to increase O(2)-evoked calcium signals, implicating globins in sensory signaling. An analysis of wild C. elegans strains indicates that the N2 alleles of npr-1 and glb-5 arose recently in the same strain background, possibly as an adaptation to laboratory conditions.

[1]  R. Greenspan,et al.  The nature of genetic influences on behavior: lessons from "simpler" organisms. , 2006, The American journal of psychiatry.

[2]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.

[3]  Mario de Bono,et al.  Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans , 2006, Current Biology.

[4]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[5]  D. Sylvia Principles and Applications of Soil Microbiology , 1997 .

[6]  Mario de Bono,et al.  A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[7]  L. Kruglyak,et al.  Recombinational Landscape and Population Genomics of Caenorhabditis elegans , 2009, PLoS genetics.

[8]  D. Moerman,et al.  Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. , 2007, Genome research.

[9]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[10]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[11]  Mario de Bono,et al.  Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans , 2002, Nature.

[12]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[13]  L. Kruglyak,et al.  Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans , 2008, Nature.

[14]  Evan Z. Macosko,et al.  Innate Immunity in Caenorhabditis elegans Is Regulated by Neurons Expressing NPR-1/GPCR , 2008, Science.

[15]  L. Kruglyak,et al.  Breeding Designs for Recombinant Inbred Advanced Intercross Lines , 2008, Genetics.

[16]  Dee R. Denver,et al.  High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome , 2004, Nature.

[17]  R. S. Shmookler Reis,et al.  Strain evolution in Caenorhabditis elegans: Transposable elements as markers of interstrain evolutionary history , 1995, Journal of Molecular Evolution.

[18]  H. Greenway,et al.  Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. , 2006, Annals of botany.

[19]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[20]  G Ulrich Nienhaus,et al.  Searching for Neuroglobin's role in the brain , 2007, IUBMB life.

[21]  Leonid Kruglyak,et al.  A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans , 2009, Science.

[22]  S N Vinogradov,et al.  Nonvertebrate hemoglobins: functions and molecular adaptations. , 2001, Physiological reviews.

[23]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[24]  R. Mott,et al.  Prospects for complex trait analysis in the mouse , 2008, Mammalian Genome.

[25]  Pietro Perona,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A common genetic target for environmental and heritable influences on aggressiveness in Drosophila , 2008 .

[26]  L. Moens,et al.  The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification , 2008, BMC Evolutionary Biology.

[27]  Cornelia I Bargmann,et al.  A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans , 2006, PLoS biology.

[28]  Trudy F C Mackay,et al.  The genetic architecture of quantitative traits: lessons from Drosophila. , 2004, Current opinion in genetics & development.

[29]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[30]  R. Greenspan,et al.  Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. , 1997, Science.

[31]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[32]  K. White,et al.  Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait , 2002, Nature Genetics.

[33]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[34]  Jonathan Flint,et al.  Analysis of quantitative trait loci that influence animal behavior. , 2003, Journal of neurobiology.

[35]  R. B. Azevedo,et al.  npr-1 Regulates Foraging and Dispersal Strategies in Caenorhabditis elegans , 2008, Current Biology.

[36]  M. Soller,et al.  Advanced intercross lines, an experimental population for fine genetic mapping. , 1995, Genetics.

[37]  L. Kruglyak,et al.  Widespread Genetic Incompatibility in C. Elegans Maintained by Balancing Selection , 2008, Science.

[38]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[39]  K. Kendler Twin studies of psychiatric illness: an update. , 2001, Archives of general psychiatry.

[40]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[41]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[42]  Paul W. Sternberg,et al.  Acute carbon dioxide avoidance in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[43]  Andrew P Morris,et al.  Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice , 2004, Nature Genetics.

[44]  L. Moens,et al.  Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family , 2007, BMC Genomics.