Dynamics of Biomembranes: Effect of the Bulk Fluid
暂无分享,去创建一个
[1] Daniel,et al. Design of Finite Element Tools for Coupled Surface and Volume Meshes , 2008 .
[2] Hantaek Bae. Navier-Stokes equations , 1992 .
[3] Eberhard Bänsch,et al. Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.
[4] M. Giaquinta,et al. Calculus of Variations I , 1995 .
[5] Editors , 1986, Brain Research Bulletin.
[6] Ricardo H. Nochetto,et al. Discrete gradient flows for shape optimization and applications , 2007 .
[7] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[8] Harald Garcke,et al. Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..
[9] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[10] Robert E. Rudd,et al. On the variational theory of cell-membrane equilibria , 2003 .
[11] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[12] Philippe G. Ciarlet,et al. Finite element methods , 1991 .
[13] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[14] R. Skalak,et al. Mechanics and thermodynamics of bio membranes 1 , 1979 .
[15] Ricardo H. Nochetto,et al. Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..
[16] Gerhard Dziuk,et al. Computational parametric Willmore flow , 2008, Numerische Mathematik.
[17] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .
[18] James T. Jenkins,et al. The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .
[19] M. Droske,et al. A level set formulation for Willmore flow , 2004 .
[20] Pingwen Zhang,et al. Continuum theory of a moving membrane. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] Q. Du,et al. Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .
[22] Gerhard Dziuk,et al. Error analysis of a finite element method for the Willmore flow of graphs , 2006 .
[23] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[24] Ricardo H. Nochetto,et al. Geometrically Consistent Mesh Modification , 2010, SIAM J. Numer. Anal..
[25] Steven J. Ruuth,et al. Threshold dynamics for high order geometric motions , 2006 .
[26] Raluca E. Rusu. An algorithm for the elastic flow of surfaces , 2005 .
[27] S. Brendle,et al. Calculus of Variations , 1927, Nature.
[28] P. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.
[29] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[30] A. Schmidt,et al. Design of Adaptive Finite Element Software , 2005 .
[31] Matthew MacDonald,et al. Shapes and Geometries , 1987 .
[32] D. M,et al. A level set formulation for Willmore flow , 2004 .
[33] Ricardo H. Nochetto,et al. A finite element method for surface diffusion: the parametric case , 2005 .
[34] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[35] Stefan Hildebrandt,et al. The Lagrangian formalism , 1996 .
[36] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[37] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[38] Miguel Sebastian Pauletti,et al. Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction , 2008 .
[39] David J. Steigmann,et al. Fluid Films with Curvature Elasticity , 1999 .
[40] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[41] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[42] G. Burton. Sobolev Spaces , 2013 .