FAILURE PROGNOSTICS BY A DATA-DRIVEN SIMILARITY-BASED APPROACH

This paper presents a data-driven, similarity-based approach for prognostics of industrial and structural components. The potentiality of the approach is demonstrated on a problem of crack propagation, taken from literature. The crack growth process is described by a nonlinear model affected by nonadditive noises. A comparison is provided with an existing Monte Carlo-based estimation method, known as particle filtering.

[1]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[2]  M. Farid Golnaraghi,et al.  Prognosis of machine health condition using neuro-fuzzy systems , 2004 .

[3]  Luca Podofillini,et al.  Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation , 2002, Reliab. Eng. Syst. Saf..

[4]  Beichelt Frank,et al.  IEEE Trans. Reliab. , 1992 .

[5]  James W. Provan,et al.  Probabilistic fracture mechanics and reliability , 1987 .

[6]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[7]  George J. Klir,et al.  Data-Driven Identification of Key Variables , 1997 .

[8]  Enrico Zio,et al.  Combining Relevance Vector Machines and exponential regression for bearing residual life estimation , 2012 .

[9]  Raimondo Schettini,et al.  Fuzzy reasoning approach to similarity evaluation in image analysis , 1993, Int. J. Intell. Syst..

[10]  V. V. Bolotin,et al.  Probabilistic model of early fatigue crack growth , 1998 .

[11]  Paul R. Drake,et al.  Condition-based maintenance and machine diagnostics , 1994 .

[12]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[13]  C. T. Lam,et al.  Optimal maintenance policies for deteriorating systems under various maintenance strategies C. Teresa Lam and R.H. Yeh. , 1993 .

[14]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[15]  Maxence Bigerelle,et al.  Bootstrap analysis of FCGR, application to the Paris relationship and to lifetime prediction , 1999 .

[16]  Enrico Zio,et al.  A data-driven approach for predicting failure scenarios in nuclear systems , 2010 .

[17]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[18]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[19]  L. Peel,et al.  Data driven prognostics using a Kalman filter ensemble of neural network models , 2008, 2008 International Conference on Prognostics and Health Management.

[20]  D. Norman System safety. , 1991, Science.

[21]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[22]  Tan Tien Nguyen,et al.  Machine Performance Degradation Assessment and Remaining Useful Life Prediction Using Proportional Hazard Model and SVM , 2012 .

[23]  Hans-Jürgen Zimmermann,et al.  PII: S0165-0114(98)00337-6 , 2003 .

[24]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[25]  Enrico Zio,et al.  Monte Carlo-based filtering for fatigue crack growth estimation , 2009 .

[26]  S. Winterstein,et al.  Random Fatigue: From Data to Theory , 1992 .

[27]  A. Srivastava,et al.  Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks , 2009, Reliab. Eng. Syst. Saf..

[28]  C. Gouriéroux,et al.  Non-Gaussian State-Space Modeling of Nonstationary Time Series , 2008 .

[29]  Jay Lee,et al.  A prognostic algorithm for machine performance assessment and its application , 2004 .

[30]  V. A. Kopnov Optimal degradation processes control by two-level policies , 1999 .

[31]  Diederik J.D. Wijnmalen,et al.  Optimum condition-based maintenance policies for deteriorating systems with partial information , 1996 .

[32]  Bhaskar D. Rao,et al.  On-line learning algorithms for locally recurrent neural networks , 1999, IEEE Trans. Neural Networks.

[33]  Jianbo Yu,et al.  A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems , 2008, 2008 International Conference on Prognostics and Health Management.

[34]  Michael G. Pecht,et al.  Support Vector Prognostics Analysis of Electronic Products and Systems , 2007, AAAI Fall Symposium: Artificial Intelligence for Prognostics.

[35]  ENRICO ZIO,et al.  A Fuzzy Similarity-Based Method for Failure Detection and Recovery Time Estimation , 2010 .

[36]  F. Kozin,et al.  Probabilistic models of fatigue crack growth: Results and speculations , 1989 .

[37]  K. Simola,et al.  Models for non-destructive inspection data , 1998 .

[38]  Kaisa Simola,et al.  Application of stochastic filtering for lifetime prediction , 2006, Reliab. Eng. Syst. Saf..

[39]  E. Zio,et al.  Identification of nuclear transients via optimized fuzzy clustering , 2005 .

[40]  Stan Uryasev,et al.  Optimal Operational Strategies for an Inspected Component - Statement of the Problem , 1990 .

[41]  Enrico Zio,et al.  A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system , 2010, Reliab. Eng. Syst. Saf..

[42]  Enrico Zio,et al.  Fatigue crack growth estimation by relevance vector machine , 2012, Expert Syst. Appl..

[43]  Viliam Makis,et al.  Optimal component replacement decisions using vibration monitoring and the proportional-hazards model , 2002, J. Oper. Res. Soc..

[44]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[45]  Ming J. Zuo,et al.  Health condition prognostics of gears using a recurrent neural network approach , 2009, 2009 Annual Reliability and Maintainability Symposium.

[46]  G. I. Schuëller,et al.  Reliability of deteriorating structures , 1984 .

[47]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[48]  Ruey Huei Yeh State-age-dependent maintenance policies for deteriorating systems with Erlang sojourn time distributions , 1997 .

[49]  W. E. Vesely,et al.  Degradation modeling with application to aging and maintenance effectiveness evaluations , 1990 .

[50]  G. D. Liveing,et al.  The University of Cambridge , 1897, British medical journal.

[51]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..