Investigation of in vitro bioactivity and antibacterial activity of manganese-doped spray pyrolyzed bioactive glasses

[1]  S. Shih,et al.  Correlation of Morphology and In-Vitro Degradation Behavior of Spray Pyrolyzed Bioactive Glasses , 2019, Materials.

[2]  S. Shih,et al.  Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method , 2018, Applied Sciences.

[3]  W. Peukert,et al.  Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications , 2018, Journal of Materials Science: Materials in Medicine.

[4]  Chen-Ying Wang,et al.  The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses , 2017, Materials.

[5]  B. Barrioni,et al.  Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering , 2017, Journal of Materials Science.

[6]  Sanjeev Kumar,et al.  Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles , 2016 .

[7]  Munish Sharma,et al.  Polymer and surfactant-templated synthesis of hollow and porous ZnS nano- and microspheres in a spray pyrolysis reactor. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[8]  S. Shih,et al.  Manipulation of morphology of strontium titanate particles by spray pyrolysis , 2014 .

[9]  G. Maina,et al.  In vitro study of manganese-doped bioactive glasses for bone regeneration. , 2014, Materials science & engineering. C, Materials for biological applications.

[10]  S. Shih,et al.  Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass , 2013 .

[11]  S. Shih,et al.  Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis , 2013 .

[12]  S. Shih,et al.  One-step synthesis of bioactive glass by spray pyrolysis , 2012, Journal of Nanoparticle Research.

[13]  A. Boccaccini,et al.  Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications , 2012 .

[14]  S. Shih,et al.  Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis , 2012, Journal of Nanoparticle Research.

[15]  Ashraf F. Ali,et al.  Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles , 2012 .

[16]  S. Ramesh,et al.  Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics , 2011 .

[17]  T. Nakano,et al.  Synthesis of Hydroxyapatite Contining Manganese and Its Evaluation of Biocompatibility , 2010 .

[18]  H. F. Chang,et al.  Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds , 2010 .

[19]  Y. Bae,et al.  Manganese Supplementation Improves Mineral Density of the Spine and Femur and Serum Osteocalcin in Rats , 2008, Biological Trace Element Research.

[20]  M. Mitewa,et al.  Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic Sodium Monensin A. , 2008, Journal of inorganic biochemistry.

[21]  J. Nebe,et al.  Influence of manganese ions on cellular behavior of human osteoblasts in vitro. , 2007, Biomolecular engineering.

[22]  B. Creaven,et al.  Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)2].8.8H(2)O and [Cu(4-Mecdoa)(phen)2].13H2O (phen=1,10-phenant , 2007, Journal of inorganic biochemistry.

[23]  Jiang Chang,et al.  Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[24]  Paul F. McMillan,et al.  Infrared spectroscopy of silicate glasses with application to natural systems , 2004 .

[25]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .

[26]  F. Cui,et al.  Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite , 1998, Journal of materials science. Materials in medicine.

[27]  L. Hench Sol-gel materials for bioceramic applications , 1997 .

[28]  Gary L. Messing,et al.  Ceramic Powder Synthesis by Spray Pyrolysis , 1993 .

[29]  Chikara Ohtsuki,et al.  Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid , 1992 .

[30]  A. Avenell,et al.  Trace Element Nutrition and Bone Metabolism , 1992, Nutrition Research Reviews.

[31]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[32]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[33]  B. O. Fowler Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution , 1974 .

[34]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[35]  Hurley Ls,et al.  The influence of trace elements on the skeleton. , 1963 .

[36]  L. Hurley,et al.  The influence of trace elements on the skeleton. , 1963, Clinical orthopaedics and related research.