The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi.

Filamentous fungi grow as a multicellular, multinuclear network of filament-shaped cells called hyphae. A fungal individual can be viewed as a fluid, dynamic system that is characterized by hyphal tip growth, branching, and hyphal fusion (anastomosis). Hyphal anastomosis is especially important in such nonlinear systems for the purposes of communication and homeostasis. Filamentous fungi can also undergo hyphal fusion with different individuals to form heterokaryons. However, the viability of such heterokaryons is dependent upon genetic constitution at heterokaryon incompatibility (het) loci. If hyphal fusion occurs between strains that differ in allelic specificity at het loci, vegetative incompatibility, which is characterized by hyphal compartmentation and cell lysis, is induced. This review covers microscopic and genetic analysis of hyphal fusion and the molecular and genetic analysis of the consequence of hyphal fusion between individuals that differ in specificity at het loci in filamentous ascomycetes.

[1]  J. Bégueret,et al.  Proteolytic enzymes and protoplasmic incompatibility in Podospora anserina. , 1973, Nature: New biology.

[2]  N. L. Glass,et al.  Molecular characterization of tol, a mediator of mating-type-associated vegetative incompatibility in Neurospora crassa. , 1999, Genetics.

[3]  G. May,et al.  The signature of balancing selection: fungal mating compatibility gene evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Mayfield,et al.  The Mechanism of Heterokaryotic Growth in VERTICILLIUM DAHLIAE. , 1974, Genetics.

[5]  J. Labarère,et al.  A Pleiotropic Mutation Affecting Protoperithecium Formation and Ascospore Outgrowth in Podospora anserina , 1979 .

[6]  K. Raper,et al.  Heterokaryon formation and genetic analyses of color mutants in Aspergillus heterothallicus. , 1967, American journal of botany.

[7]  D. D. Perkins The use of duplication-generating rearrangements for studying heterokaryon incompatibility genes in Neurospora. , 1975, Genetics.

[8]  B. Turcq,et al.  Reactivity in vegetative incompatibility of the HE T-E protein of the fungus Podospora anserina is dependent on GTP-binding activity and a WD40 repeated domain , 1997, Molecular and General Genetics MGG.

[9]  J. Kämper,et al.  Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in ustilago maydis , 1995, Cell.

[10]  M. Picard,et al.  Mating types and sexual development in filamentous ascomycetes , 1997, Microbiology and molecular biology reviews : MMBR.

[11]  J. Jinks,et al.  Heterokaryosis: Its significance in wild homothallic ascomycetes and fungi imperfecti , 1966 .

[12]  C. Barreau,et al.  The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation. , 1998, Genetics.

[13]  P. Durrens,et al.  Temporal Action of Mutations Inhibiting the Accomplishment of Quiescence or Disrupting Development in the Fungus PODOSPORA ANSERINA. , 1985, Genetics.

[14]  M. Hyakumachi,et al.  Non-self-anastomosing isolates of Rhizoctonia solani obtained from fields of sugarbeet monoculture , 1987 .

[15]  D. D. Perkins Main features of vegetative incompatibility in Neurospora. , 1988 .

[16]  B. Turcq,et al.  A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and G beta homologous domain. , 1995, Gene.

[17]  D. Newmeyer,et al.  A pericentric inversion in Neurospora, with unstable duplication progeny. , 1967, Genetics.

[18]  O. Mylyk,et al.  Heteromorphism for Heterokaryon Incompatibility Genes in Natural Populations of NEUROSPORA CRASSA. , 1976, Genetics.

[19]  J. Bernet In Podospora anserina, protoplasmic incompatibility genes are involved in cell death control via multiple gene interactions , 1992, Heredity.

[20]  J. Wilson,et al.  HETEROCARYOSIS AND PROTOPLASMIC INCOMPATIBILITY IN NEUROSPORA CRASSA. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. G. Reynaga-Peña,et al.  What determines growth direction in fungal hyphae? , 1998, Fungal genetics and biology : FG & B.

[22]  N. L. Glass,et al.  Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain. , 1997, Genetics.

[23]  R. Metzenberg,et al.  Neurospora crassa A mating-type region. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. L. Smith,et al.  The product of the het-C heterokaryon incompatibility gene of Neurospora crassa has characteristics of a glycine-rich cell wall protein. , 1996, Genetics.

[25]  F. Clarac,et al.  Tension Receptor Reflexes in the Walking Legs of the Crab Cancer pagurus , 1973, Nature.

[26]  S. Saupe,et al.  Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Bégueret,et al.  Incompatibility in Podospora anserina: Comparative Properties of the Antagonistic Cytoplasmic Factors of a Nonallelic System , 1974, Journal of bacteriology.

[28]  N. L. Glass,et al.  Mating type and vegetative incompatibility in filamentous ascomycetes. , 1992, Annual review of phytopathology.

[29]  S. Free,et al.  The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. , 1998, Genetics.

[30]  F. Ayala,et al.  Molecular genetics of speciation and human origins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Croft,et al.  Analysis of heterokaryon incompatibility between heterokaryon-compatibility (h-c) groups R and GL provides evidence that at least eight het loci control somatic incompatibility in Aspergillus nidulans. , 1993, Journal of general microbiology.

[32]  J. Leslie Fungal vegetative compatibility. , 1993, Annual review of phytopathology.

[33]  C. Barreau,et al.  Regulation of gene expression during the vegetative incompatibility reaction in Podospora anserina. Characterization of three induced genes. , 1998, Genetics.

[34]  O. Mylyk Heterokaryon incompatibility genes in Neurospora crassa detected using duplication-producing chromosome rearrangements. , 1975, Genetics.

[35]  C. Goutte,et al.  a1 Protein alters the dna binding specificity of α2 repressor , 1988, Cell.

[36]  A. Griffiths NULL MUTANTS OF THE A AND a MATING TYPE ALLELES OF NEUROSPORA CRASSA , 1982 .

[37]  J. E. Puhalla,et al.  A comparison of heterokaryosis and vegetative incompatibility among varieties of Gibberella fujikuroi (Fusarium Moniliforme) , 1985 .

[38]  D. Jacobson,et al.  Molecular and functional analyses of incompatibility genes at het-6 in a population of Neurospora crassa. , 2000, Fungal genetics and biology : FG & B.

[39]  X. Xiang,et al.  Hyphal tip growth and nuclear migration. , 1999, Current opinion in microbiology.

[40]  A. Rayner,et al.  Hyphal and mycelial responses associated with genetic exchange within and between species of the basidiomycete genus Stereum , 1989 .

[41]  A. Clark,et al.  Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Mycoparasitism Proceedings of B.M.S. meetings , 1984 .

[43]  P. H. Gregory The first benefactor's lecture the fungal mycelium: An historical perspective , 1984 .

[44]  S. Pöggeler Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes , 1999, Current Genetics.

[45]  V. Coustou,et al.  The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Prosser Kinetics of Filamentous Growth and Branching , 1995 .

[47]  P. Reichard,et al.  Ribonucleotide reductases. , 1998, Annual review of biochemistry.

[48]  M. P. Gallagher,et al.  Microscopic observation of perfect hyphal fusion in Rhizoctonia solani , 1999 .

[49]  B. Turcq,et al.  A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. , 1997, Genetics.

[50]  D. Jacobson Vegetative compatibility and self-incompatibility within Fusarium oxysporum f. sp. melonis. , 1988 .

[51]  Fordyce A. Davidson,et al.  Context-dependent macroscopic patterns in growing and interacting mycelial networks , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  H. Boucherie,et al.  Protoplasmic Incompatibility in PODOSPORA ANSERINA: a Possible Function for Incompatibility Genes. , 1980, Genetics.

[53]  P. Cortesi,et al.  Genetics of Vegetative Incompatibility inCryphonectria parasitica , 1998, Applied and Environmental Microbiology.

[54]  D. Jacobson,et al.  Control of mating type heterokaryon incompatibility by the tol gene in Neurospora crassa and N. tetrasperma. , 1992, Genome.

[55]  J. Klein,et al.  MOLECULAR TRANS-SPECIES POLYMORPHISM , 1998 .

[56]  B. Turcq,et al.  Vegetative incompatibility in filamentous fungi: het genes begin to talk. , 1994, Trends in genetics : TIG.

[57]  D. Hartl,et al.  Adaptive significance of vegetative incompatibility in Neurospora crassa. , 1975, Genetics.

[58]  M. Sachs,et al.  The Neurospora Compendium: Chromosomal Loci , 2000 .

[59]  G. Bistis Retardation of the Growth of Transplanted Apothecia: A Manifestation of Vegetative Incompatibility in Ascobolus stercorarius (Bull.) Schröt. , 1994 .

[60]  Davidson Modelling the qualitative response of fungal mycelia to heterogeneous environments , 1998, Journal of theoretical biology.

[61]  P. Durrens,et al.  Podospora anserina mutant defective in protoperithecium formation, ascospore germination, and cell regeneration , 1979, Journal of bacteriology.

[62]  B. Turcq,et al.  Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Boucherie,et al.  Polypeptide synthesis during protoplasmic incompatibility in the fungus Podospora anserina. , 1981, Biochimica et biophysica acta.

[64]  S. Saupe,et al.  Molecular Genetics of Heterokaryon Incompatibility in Filamentous Ascomycetes , 2000, Microbiology and Molecular Biology Reviews.

[65]  F. Banuett Signalling in the Yeasts: An Informational Cascade with Links to the Filamentous Fungi , 1998, Microbiology and Molecular Biology Reviews.

[66]  B. Turcq,et al.  MOD-D, a Galpha subunit of the fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. , 1999, Genetics.

[67]  D. Jacobson,et al.  Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. , 2000, Genetics.

[68]  J. Correll,et al.  Heterokaryon self-incompatibility in Gibberella fujikuroi (Fusarium moniliforme) , 1989 .

[69]  J. Croft,et al.  A chromosome assay method for the detection of heterokaryon incompatibility (het) genes operating between members of different heterokaryon compatibility (h-c) groups in Aspergillus nidulans. , 1983, Journal of general microbiology.

[70]  Maheshwari,et al.  A Demonstration of the Role of het Genes in Heterokaryon Formation in Neurospora under Simulated Field Conditions , 1996, Fungal genetics and biology : FG & B.

[71]  M. Plamann,et al.  Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins , 1998, Molecular microbiology.

[72]  M. Konopleva,et al.  Apoptosis. Molecules and mechanisms. , 1999, Advances in experimental medicine and biology.

[73]  D. Jacobson,et al.  An osmotic-remedial, temperature-sensitive mutation in the allosteric activity site of ribonucleotide reductase in Neurospora crassa , 2000, Molecular and General Genetics MGG.

[74]  O. Yarden,et al.  Detection of a protein phosphatase 2A holoenzyme in Neurospora crassa. , 1999 .

[75]  D. Newmeyer A suppressor of the heterokaryon-incompatibility associated with mating type in Neurospora crassa. , 1970, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[76]  G. Pontecorvo The parasexual cycle in fungi. , 1956, Annual review of microbiology.

[77]  A. Griffiths,et al.  Polymorphism of het -genes prevents resource plundering in Neurospora crassa , 1998 .

[78]  C. Deleu,et al.  A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. , 1993, Genetics.

[79]  S. Saupe,et al.  Characterization of hch, the Podospora anserina homolog of the het-c heterokaryon incompatibility gene of Neurospora crassa , 2000, Current Genetics.

[80]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[81]  M. Rose,et al.  Distinct morphological phenotypes of cell fusion mutants. , 1998, Molecular biology of the cell.

[82]  N. L. Glass,et al.  Heterologous expression of mating-type genes in filamentous fungi. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[83]  C Yanofsky,et al.  Neurospora crassa a mating-type region. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  C. Yamashiro,et al.  Effects of the tol mutation on allelic interactions at het loci in Neurospora crassa. , 1997, Genome.

[85]  C. Caten Vegetative incompatibility and cytoplasmic infection in fungi. , 1972, Journal of general microbiology.

[86]  H. Boucherie,et al.  Protoplasmic incompatibility and self-lysis in Podospora anserina: enzyme activities associated with cell destruction , 1978 .

[87]  Glass Nl,et al.  Mating Type and Vegetative Incompatibility in Filamentous Ascomycetes , 1992 .

[88]  W. Macdonald,et al.  The ultrastructure of hyphal anastomoses between vegetatively compatible and incompatible virulent and hypovirulent strains of Cryphonectria parasitica , 1991 .

[89]  B. Roberts,et al.  Prions in Saccharomyces and Podosporaspp.: Protein-Based Inheritance , 1999, Microbiology and Molecular Biology Reviews.

[90]  J. Thorner,et al.  12 Pheromone Response and Signal Transduction during the Mating Process of Saccharomyces cerevisiae , 1992 .

[91]  P. Cortesi,et al.  Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  K. Klomparens,et al.  Microscopic and Ultrastructural Examination of Vegetative Incompatibility in Partial Diploids Heterozygous at het Loci in Neurospora crassa , 1998, Fungal genetics and biology : FG & B.

[93]  S. Kang,et al.  Cyclic AMP Restores Appressorium Formation Inhibited by Polyamines in Magnaporthe grisea. , 1998, Phytopathology.