Simplified Tandem Polymer Solar Cells with an Ideal Self‐Organized Recombination Layer

A new tandem architecture for printable photovoltaics using a versatile organic nanocomposite containing photoactive and interfacial materials is demonstrated. The nanocomposite forms an ideal self-organized recombination layer via a spontaneous vertical phase separation, which yields a simplified tandem structure fabricated with only four component layers and a high tandem efficiency of 10.8%.

[1]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[2]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[3]  Joachim Luther,et al.  Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells , 2012 .

[4]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[5]  Kazuhito Hashimoto,et al.  Self‐Organized Buffer Layers in Organic Solar Cells , 2008 .

[6]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[7]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[8]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[9]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[10]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[11]  Yiwang Chen,et al.  Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency , 2013 .

[12]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[13]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[14]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[15]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[16]  Jinho Lee,et al.  A Depletion‐Free, Ionic, Self‐Assembled Recombination Layer for Tandem Polymer Solar Cells , 2014 .

[17]  Thanh Luan Nguyen,et al.  Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrrole‐Based Low‐Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electron‐Transport Layers , 2013, Advanced materials.

[18]  Suren A. Gevorgyan,et al.  A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers , 2014 .

[19]  Soonil Hong,et al.  Electrostatically Self‐Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells , 2012, Advanced materials.

[20]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[21]  Bernard Kippelen,et al.  High performance polymeric charge recombination layer for organic tandem solar cells , 2012 .

[22]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[23]  Kwanghee Lee,et al.  Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells. , 2013, Nanoscale.

[24]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[25]  A. Neumann,et al.  Recent progress in the determination of solid surface tensions from contact angles. , 2007, Advances in colloid and interface science.

[26]  Kwanghee Lee,et al.  Synergistic Effect of Processing Additives and Optical Spacers in Bulk‐Heterojunction Solar Cells , 2012 .

[27]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[28]  Y. Hao,et al.  Investigation of Controlled Current Matching in Polymer Tandem Solar Cells Considering Different Layer Sequences and Optical Spacer , 2012 .

[29]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[30]  F. Krebs,et al.  Roll-to-roll processed polymer tandem solar cells partially processed from water , 2012 .