A review of AC impedance modeling and validation in SOFC diagnosis

[1]  J. I. Gazzarri,et al.  Non-destructive delamination detection in solid oxide fuel cells , 2007 .

[2]  S. Kakaç,et al.  A review of numerical modeling of solid oxide fuel cells , 2007 .

[3]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[4]  J. I. Gazzarri,et al.  Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes , 2007 .

[5]  Mogens Bjerg Mogensen,et al.  Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy , 2007 .

[6]  Robert van den Hoed,et al.  Characterising fuel cell technology: Challenges of the commercialisation process , 2007 .

[7]  Hongqing Cao,et al.  A new tree structure code for equivalent circuit and evolutionary estimation of parameters , 2007 .

[8]  Ellen Ivers-Tiffée,et al.  Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 , 2006 .

[9]  Daniel Favrat,et al.  Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk , 2006 .

[10]  J. P. Strakey,et al.  Solid oxide fuel cell technology development in the U.S. , 2006 .

[11]  Yann Bultel,et al.  Discrete modelling of the electrochemical performance of SOFC electrodes , 2006 .

[12]  Bobby Pejcic,et al.  Impedance spectroscopy: Over 35 years of electrochemical sensor optimization , 2006 .

[13]  B. Pejcic,et al.  In situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction—A powerful new technique for the characterization of electrochemical surfaces and interfaces , 2006 .

[14]  W. Bessler Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes I. Stagnation Point Flow Geometry , 2006 .

[15]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[16]  D. Schwartz,et al.  Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials , 2006 .

[17]  M. Viviani,et al.  IMPEDANCE ANALYSIS OF OXYGEN REDUCTION IN SOFC COMPOSITE ELECTRODES , 2006 .

[18]  J. Kilner,et al.  Differential impedance analysis of single crystal and polycrystalline yttria stabilized zirconia , 2006 .

[19]  Parthasarathy M. Gomadam,et al.  Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells , 2005 .

[20]  Biao Huang,et al.  Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance , 2005 .

[21]  S. Adler,et al.  Microelectrode Array for Isolation of Electrode Polarization on Planar Solid Electrolytes , 2005 .

[22]  M. Viviani,et al.  Electrochemical investigation of mixed ionic/electronic cathodes for SOFCs , 2005 .

[23]  D. Schwartz,et al.  Full-spectrum nonlinear response of a sinusoidally modulated rotating disk electrode , 2005 .

[24]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[25]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[26]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[27]  Daria Vladikova,et al.  Secondary differential impedance analysis – a tool for recognition of CPE behavior , 2004 .

[28]  Nguyen Q. Minh,et al.  Solid oxide fuel cell technology—features and applications , 2004 .

[29]  K. Nozaki,et al.  AC impedance behavior of a practical-size single-cell SOFC under DC current , 2004 .

[30]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[31]  Akira Negishi,et al.  Impedance analysis of a disk-type SOFC using doped lanthanum gallate under power generation , 2004 .

[32]  Akira Negishi,et al.  Numerical simulation of a disk-type SOFC for impedance analysis under power generation , 2004 .

[33]  Keqin Huang,et al.  Gas-Diffusion Process in a Tubular Cathode Substrate of an SOFC I Theoretical Analysis of Gas-Diffusion Process under Cylindrical Coordinate System , 2004 .

[34]  Keqin Huang,et al.  Gas-Diffusion Process in a Tubular Cathode Substrate of a SOFC II: Identification of Gas-Diffusion Process Using AC Impedance Method , 2004 .

[35]  Bernard A. Boukamp,et al.  Electrochemical impedance spectroscopy in solid state ionics: recent advances , 2004 .

[36]  K. Darowicki,et al.  Instantaneous electrochemical impedance spectroscopy of electrode reactions , 2004 .

[37]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[38]  J. Jamnik Impedance spectroscopy of mixed conductors with semi-blocking boundaries , 2003 .

[39]  Z. Stoynov,et al.  Selectivity study of the differential impedance analysis—comparison with the complex non-linear least-squares method , 2002 .

[40]  Paola Costamagna,et al.  Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes , 2002 .

[41]  Stuart B. Adler,et al.  Reference Electrode Placement in Thin Solid Electrolytes , 2002 .

[42]  Meilin Liu,et al.  Novel Cathodes for Low‐Temperature Solid Oxide Fuel Cells , 2002 .

[43]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[44]  Alan M. Bond,et al.  A practical approach to applying short time Fourier transform methods in voltammetric investigations , 2001 .

[45]  S. Jiang,et al.  Resistance Measurement in Solid Oxide Fuel Cells , 2001 .

[46]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[47]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[48]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[49]  R. Córdova,et al.  SEM, EDX and EIS study of an electrochemically modified electrode surface of natural enargite (Cu3AsS4) , 2000 .

[50]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[51]  Stuart B. Adler,et al.  Limitations of charge-transfer models for mixed-conducting oxygen electrodes , 2000 .

[52]  L. Gauckler,et al.  Reaction mechanism of Ni pattern anodes for solid oxide fuel cells , 2000 .

[53]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[54]  K. Darowicki,et al.  Instantaneous impedance spectra of a non-stationary model electrical system , 2000 .

[55]  Kazimierz Darowicki,et al.  Theoretical description of the measuring method of instantaneous impedance spectra , 2000 .

[56]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[57]  Joachim Maier,et al.  A powerful electrical network model for the impedance of mixed conductors , 1999 .

[58]  S. Jiang,et al.  H2 oxidation on Ni/Y-TZP cermet electrodes – a comparison of electrode behaviour by GCI and EIS techniques , 1999 .

[59]  Ludwig J. Gauckler,et al.  Reaction kinetics of the Pt, O2(g)|c-ZrO2 system : precursor-mediated adsorption , 1999 .

[60]  Ludwig J. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation , 1999 .

[61]  L. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation , 1999 .

[62]  Wenzhao Li,et al.  Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes , 1998 .

[63]  Stuart B. Adler,et al.  Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes , 1998 .

[64]  S. Barnett,et al.  Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study , 1998 .

[65]  Mogens Bjerg Mogensen,et al.  Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes , 1998 .

[66]  Raymond Anthony George,et al.  Reducing the manufacturing cost of tubular solid oxide fuel cell technology , 1998 .

[67]  L. Pederson,et al.  Experimental limitations in impedance spectroscopy: Part VI. Four-point measurements of solid materials systems , 1997 .

[68]  K. T. Kawagoe,et al.  Sinusoidal Voltammetry for the Analysis of Carbohydrates at Copper Electrodes , 1997 .

[69]  E. Garboczi,et al.  Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position , 1997 .

[70]  Meilin Liu,et al.  Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors , 1996 .

[71]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[72]  D. Schwartz,et al.  Nonlinear dynamics of modulated flow between a porous injector and an impermeable substrate , 1996 .

[73]  Larry R. Pederson,et al.  Experimental limitations in impedance spectroscopy: Part II — electrode artifacts in three-point measurements on Pt/YSZ , 1996 .

[74]  Larry R. Pederson,et al.  Experimental limitations in impedance spectroscopy: Part I — simulation of reference electrode artifacts in three-point measurements , 1996 .

[75]  W. Bogaerts,et al.  Instantaneous Corrosion Rate Measurement with Small-Amplitude Potential Intermodulation Techniques , 1996 .

[76]  Z. Mao Numerical analysis of higher order harmonics in the response of a mass transfer probe , 1995 .

[77]  K. Darowicki Corrosion rate measurements by non-linear electrochemical impedance spectroscopy , 1995 .

[78]  Bernard A. Boukamp,et al.  A Linear Kronig‐Kramers Transform Test for Immittance Data Validation , 1995 .

[79]  Kazimierz Darowicki,et al.  The amplitude analysis of impedance spectra , 1995 .

[80]  F. Berkel,et al.  Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics , 1994 .

[81]  Zdravko Stoynov,et al.  Nonstationary impedance spectroscopy , 1993 .

[82]  J. Diard,et al.  Calculation, simulation and interpretation of electrochemical impedance diagrams , 1993 .

[83]  J. Diard,et al.  Calculation, simulation and interpretation of electrochemical impedancesPart 3. Conditions for observation of low frequency inductive diagrams for a two-step electron transfer reaction with an adsorbed intermediate species , 1992 .

[84]  B. Boukamp,et al.  Electrode polarization at the Au, O2(g)/yttria stabilized zirconia interface : Part I: theoretical considerations of reaction model , 1991 .

[85]  B. Boukamp,et al.  Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part II: electrochemical measurements and analysis , 1991 .

[86]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[87]  D. Macdonald Review of mechanistic analysis by electrochemical impedance spectroscopy , 1990 .

[88]  Zdravko Stoynov,et al.  Impedance modelling and data processing: structural and parametrical estimation , 1990 .

[89]  Z. Stoynov Structural spectral analysis of electrochemical impedance , 1989 .

[90]  D. Franceschetti,et al.  Impedance characteristics of three-phase electrodes on solid electrolytes , 1989 .

[91]  J. Macdonald Analysis of ac conduction in disordered solids , 1989 .

[92]  J. Diard,et al.  Calculation, simulation and interpretation of electrochemical impedance: Part II. Interpretation of Volmer-Heyrovsky impedance diagrams , 1988 .

[93]  J. Macdonald Linear relaxation: Distributions, thermal activation, structure, and ambiguity , 1987 .

[94]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[95]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[96]  J. Macdonald,et al.  Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes , 1987 .

[97]  Koji Amano,et al.  Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model , 1987 .

[98]  Koji Amano,et al.  Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part II: Electrochemical measurements and analysis , 1987 .

[99]  J. Macdonald Relaxation in systems with exponential or Gaussian distributions of activation energies , 1987 .

[100]  Z. Stoynov,et al.  Structural simulation of electrochemical impedances , 1986 .

[101]  D. M. Mason,et al.  Mechanism of the Electrocatalytic Reduction of Oxygen in a Tubular Solid Oxide Electrolyte Flow Reactor , 1986 .

[102]  J. Diard,et al.  Calculation, simulation and interpretation of electrochemical impedances part I. Presentation of the CASIDIE computer program , 1986 .

[103]  Robert L. Hurt,et al.  Distributed circuit elements in impedance spectroscopy: A unified treatment of conductive and dielectric systems , 1986 .

[104]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[105]  J. Macdonald Generalizations of ‘‘universal dielectric response’’ and a general distribution‐of‐activation‐energies model for dielectric and conducting systems , 1985 .

[106]  J. Macdonald Frequency response of unified dielectric and conductive systems involving an exponential distribution of activation energies , 1985 .

[107]  A. Burggraaf,et al.  The electrode resistance of ZrO2-Y2O3(-Bi2O3) solid electrolytes with Pt electrodes , 1984 .

[108]  H. Okamoto,et al.  Study of oxygen adsorption on platinum through observation of exchange current in a solid electrolyte concentration cell , 1983 .

[109]  G. Walter Application of impedance measurements to study performance of painted metals in aggressive solutions , 1981 .

[110]  H. J. D. Bruin,et al.  An impedance spectroscopy model for electron transfer reactions at an electrode/solid electrolyte interface , 1981 .

[111]  D. Franceschetti,et al.  Theory of small‐signal ac response of solids and liquids with recombining mobile charge , 1978 .

[112]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .

[113]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[114]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[115]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[116]  Z. Stoynov,et al.  Differential impedance analysis , 2005 .

[117]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[118]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[119]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[120]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[121]  C. Julien,et al.  Materials for lithium-ion batteries , 2000 .

[122]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[123]  D. Schwartz,et al.  Nonlinear Dynamics of Limiting Current in the Flow‐Modulated Uniform‐Injection Cell , 1997 .

[124]  Z. Stoynov DIFFERENTIAL IMPEDANCE ANALYSIS : AN INSIGHT INTO THE EXPERIMENTAL DATA , 1997 .

[125]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[126]  正之 土器屋 Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV) , 1995 .

[127]  H. Iwahara,et al.  Dependence of observed overvoltages on the positioning of the reference electrode on the solid electrolyte , 1994 .

[128]  G. W. Walter,et al.  A review of impedance plot methods used for corrosion performance analysis of painted metals , 1986 .

[129]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[130]  E. Subbarao,et al.  Solid electrolytes with oxygen ion conduction , 1984 .

[131]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study , 1983 .

[132]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes. I. Electrode Resistance by D-C Polarization , 1983 .

[133]  A. Nowick,et al.  Diffusion‐Controlled Polarization of Pt, Ag, and Au Electrodes with Doped Ceria Electrolyte , 1981 .

[134]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[135]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[136]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[137]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .