Sequential decoding of a general classical-quantum channel
暂无分享,去创建一个
[1] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[2] Joseph M. Renes,et al. One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.
[3] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.
[4] Mark M. Wilde,et al. The information-theoretic costs of simulating quantum measurements , 2012, ArXiv.
[5] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[6] Masahito Hayashi,et al. General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.
[7] Masahito Hayashi,et al. A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.
[8] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[9] R. Renner,et al. Generalized Entropies , 2012, 1211.3141.
[10] Mark M. Wilde,et al. Towards efficient decoding of classical-quantum polar codes , 2013, TQC.
[11] Scott Aaronson,et al. Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[12] Joseph M. Renes,et al. Quantum polar codes for arbitrary channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[13] Saikat Guha,et al. Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.
[14] Saikat Guha,et al. Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback , 2011 .
[15] Seth Lloyd,et al. Explicit capacity-achieving receivers for optical communication and quantum reading , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[16] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[17] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[18] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[19] Schumacher,et al. Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[20] I. Devetak,et al. Classical data compression with quantum side information , 2003 .
[21] Tomohiro Ogawa,et al. Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.
[22] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[23] Pranab Sen,et al. Achieving the Han-Kobayashi inner bound for the quantum interference channel , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.
[24] J. Habif,et al. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.
[25] N. Datta,et al. The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.
[26] Joseph M. Renes,et al. Physical underpinnings of privacy , 2008 .
[27] V. P. Belavkin,et al. Optimum distinction of non-orthogonal quantum signals , 1975 .
[28] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[29] Seth Lloyd,et al. Sequential projective measurements for channel decoding. , 2010, Physical review letters.
[30] Hiroshi Nagaoka,et al. General formulas for capacity of classical-quantum channels , 2002, IEEE Transactions on Information Theory.
[31] V. Belavkin. Optimal multiple quantum statistical hypothesis testing , 1975 .
[32] S. Lloyd,et al. Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.
[33] Seth Lloyd,et al. Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.
[34] A. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .
[35] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[36] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[37] Nilanjana Datta,et al. Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.