Sequential decoding of a general classical-quantum channel

Because a quantum measurement generally disturbs the state of a quantum system, one might think that it should not be possible for a sender and receiver to communicate reliably when the receiver performs a large number of sequential measurements to determine the message of the sender. We show here that this intuition is not true, by demonstrating that a sequential decoding strategy works well even in the most general ‘one-shot’ regime, where we are given a single instance of a channel and wish to determine the maximal number of bits that can be communicated up to a small failure probability. This result follows by generalizing a non-commutative union bound to apply for a sequence of general measurements. We also demonstrate two ways in which a receiver can recover a state close to the original state after it has been decoded by a sequence of measurements that each succeed with high probability. The second of these methods will be useful in realizing an efficient decoder for fully quantum polar codes, should a method ever be found to realize an efficient decoder for classical-quantum polar codes.

[1]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[2]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[3]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[4]  Mark M. Wilde,et al.  The information-theoretic costs of simulating quantum measurements , 2012, ArXiv.

[5]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[6]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[7]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[8]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[9]  R. Renner,et al.  Generalized Entropies , 2012, 1211.3141.

[10]  Mark M. Wilde,et al.  Towards efficient decoding of classical-quantum polar codes , 2013, TQC.

[11]  Scott Aaronson,et al.  Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[12]  Joseph M. Renes,et al.  Quantum polar codes for arbitrary channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[13]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[14]  Saikat Guha,et al.  Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback , 2011 .

[15]  Seth Lloyd,et al.  Explicit capacity-achieving receivers for optical communication and quantum reading , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[18]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[19]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[21]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  Pranab Sen,et al.  Achieving the Han-Kobayashi inner bound for the quantum interference channel , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  J. Habif,et al.  Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.

[25]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[26]  Joseph M. Renes,et al.  Physical underpinnings of privacy , 2008 .

[27]  V. P. Belavkin,et al.  Optimum distinction of non-orthogonal quantum signals , 1975 .

[28]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[29]  Seth Lloyd,et al.  Sequential projective measurements for channel decoding. , 2010, Physical review letters.

[30]  Hiroshi Nagaoka,et al.  General formulas for capacity of classical-quantum channels , 2002, IEEE Transactions on Information Theory.

[31]  V. Belavkin Optimal multiple quantum statistical hypothesis testing , 1975 .

[32]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[33]  Seth Lloyd,et al.  Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.

[34]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[35]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[36]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[37]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.