The combination of polarimetric SAR with satellite SAR and optical data for classification of agricultural land

Abstract A multi-spectral SPOT image, polarimetric airborne SAR data as well as satellite based C-band SAR data have been used to perform classification of agricultural fields and areas occupied by forest and lake. Conventional Maximum Likelihood classification has been compared with classification incorporating a Gaussian mixture class model, as well as an algorithm based on multi-resolution structured data and sequential MAP (SMAP). The classification accuracies found were generally high, using combinations of sensors. It is found that multi polarization data gives invaluable information to be used in a classification scheme, a feature that can be exploited in future satellite sen sors, like for instance ASAR on board ENVISAT. The Gaussian mixture class model performed only slightly better than the conventional maximum likelihood algorithm, whereas the SMAP algorithm improved the classification results.

[1]  C. Glasbey,et al.  Land-use classification in central Spain using SIR-A and MSS imagery , 1992 .

[2]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[3]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[4]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  James Darrell McCauley,et al.  Comparison of scene segmentations: SMAP, ECHO, and maximum likelihood , 1995, IEEE Trans. Geosci. Remote. Sens..

[6]  Bernard Gimonet,et al.  SAR Data Filtering for Classification , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[8]  R. Kettig,et al.  Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects , 1976, IEEE Transactions on Geoscience Electronics.

[9]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[10]  John Haslett,et al.  Maximum likelihood discriminant analysis on the plane using a Markovian model of spatial context , 1985, Pattern Recognit..

[11]  T.F. Quatieri,et al.  Statistical model-based algorithms for image analysis , 1986, Proceedings of the IEEE.

[12]  Kun-Shan Chen,et al.  Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  Fawwaz T. Ulaby,et al.  Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  Søren Nørvang Madsen,et al.  The Danish SAR system: design and initial tests , 1991, IEEE Trans. Geosci. Remote. Sens..

[15]  Brian Everitt,et al.  Principles of Multivariate Analysis , 2001 .

[16]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[17]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[18]  Urs Wegmüller,et al.  Signature research for crop classification by active and passive microwaves , 1993 .

[19]  B. Bouman,et al.  Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands. , 1993 .

[20]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[21]  Søren Nørvang Madsen,et al.  EMISAR: an absolutely calibrated polarimetric L- and C-band SAR , 1998, IEEE Trans. Geosci. Remote. Sens..

[22]  D. Michelson Comparison of Algorithms for Classifying Swedish Landcover Using Landsat TM and ERS-1 SAR Data , 2000 .

[23]  Eric R. Ziegel,et al.  Applied Multivariate Data Analysis , 2002, Technometrics.

[24]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  C. G. J. Schotten,et al.  Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops , 1995 .

[27]  D.A. Landgrebe,et al.  Classification with spatio-temporal interpixel class dependency contexts , 1992, IEEE Trans. Geosci. Remote. Sens..

[28]  Fawwaz T. Ulaby,et al.  Land-cover classification and estimation of terrain attributes using synthetic aperture radar , 1995 .