Chemical Explosive Mode Prediction using Machine Learning for Advanced Flame Diagnostics

[1]  T. Echekki,et al.  A framework for data-based turbulent combustion closure: A posteriori validation , 2019 .

[2]  Aamir Farooq,et al.  An ANN based hybrid chemistry framework for complex fuels , 2019, Fuel.

[3]  J. Sutherland,et al.  State space parameterization of explosive eigenvalues during autoignition , 2018, Combustion and Flame.

[4]  Jacqueline H. Chen,et al.  Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis , 2018, Combustion and Flame.

[5]  F. Egolfopoulos,et al.  A physics-based approach to modeling real-fuel combustion chemistry – II. Reaction kinetic models of jet and rocket fuels , 2018, Combustion and Flame.

[6]  R. Barlow,et al.  Regime identification from Raman/Rayleigh line measurements in partially premixed flames , 2018 .

[7]  B. Cetegen,et al.  Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames , 2017 .

[8]  Opeoluwa Owoyele,et al.  Toward computationally efficient combustion DNS with complex fuels via principal component transport , 2017 .

[9]  Xue-Song Bai,et al.  Distributed reactions in highly turbulent premixed methane/air flames Part I. Flame structure characterization , 2015 .

[10]  Hessam Mirgolbabaei,et al.  Principal component transport in turbulent combustion: A posteriori analysis , 2015 .

[11]  Tianfeng Lu,et al.  Direct numerical simulations of non-premixed ethylene–air flames: Local flame extinction criterion , 2014 .

[12]  E. Mastorakos,et al.  A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames , 2013 .

[13]  Jacqueline H. Chen,et al.  Computational diagnostics for n-heptane flames with chemical explosive mode analysis , 2012 .

[14]  Habib N. Najm,et al.  Analysis of methane–air edge flame structure , 2010 .

[15]  Tianfeng Lu,et al.  Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis , 2010, Journal of Fluid Mechanics.

[16]  R. Barlow,et al.  Piloted methane/air jet flames: Transport effects and aspects of scalar structure , 2005 .

[17]  Norberto Fueyo,et al.  A single-step time-integrator of a methane-air chemical system using artificial neural networks , 1999 .

[18]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[19]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics , 1993 .

[20]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[22]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[23]  Paul G. Arias,et al.  Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations , 2017 .

[24]  Mauro Valorani,et al.  Tangential stretching rate (TSR) analysis of non premixed reactive flows , 2017 .

[25]  C. Carter,et al.  Relationship between local reaction rate and flame structure in turbulent premixed flames from simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF , 2017 .

[26]  Julien Manin,et al.  Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames , 2015 .

[27]  C. Law,et al.  Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow , 2012 .

[28]  Saurabh Gupta,et al.  Classification of ignition regimes in HCCI combustion using computational singular perturbation , 2011 .

[29]  M. Stöhr,et al.  Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor , 2011 .

[30]  Baris A. Sen,et al.  Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames , 2010 .

[31]  Christoph Schmitt,et al.  Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame , 2009 .

[32]  R. Barlow,et al.  Effects of turbulence on species mass fractions in methane/air jet flames , 1998 .