Finite element analysis of nonlinear creeping flows

Abstract Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for discontinuous stress and continuous velocity interpolations of the same order. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation.

[1]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[2]  J. Tinsley Oden,et al.  Stability of some mixed finite element methods for Stokesian flows , 1984 .

[3]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[4]  I. Babuska Error-bounds for finite element method , 1971 .

[5]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[6]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[7]  C. W. Heaps,et al.  An improved solution procedure for creep problems , 1986 .

[8]  Noboru Kikuchi,et al.  Finite element methods for constrained problems in elasticity , 1982 .

[9]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[10]  Z. Bažant,et al.  Stress Analysis for Creep , 1983 .

[11]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[12]  Thomas J. R. Hughes,et al.  Mixed Petrov-Galerkin methods for the Timoshenko beam problem , 1987 .

[13]  Thomas J. R. Hughes,et al.  A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation , 1988 .

[14]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[15]  Klaus-Jürgen Bathe,et al.  A solution procedure for thermo-elastic-plastic and creep problems , 1981 .