Direction-dependent coupling between a nanofiber-guided light field and a two-level atom with an electric quadrupole transition

We study the directional dependence of the coupling between a nanofiber-guided light field and a two-level atom with an electric quadrupole transition. We examine the situation where the atom lies on the fiber transverse axis x , the quantization axis for the atomic internal states is the other orthogonal transverse axis y , the atomic upper and lower levels are the magnetic sublevels M ′ and M of hyperfine-structure levels of an alkali-metal atom, and the field is in a quasilinearly polarized fundamental guided mode HE 11 with the polarization ξ = x or y . We find that the absolute value of the quadrupole Rabi frequency depends on the propagation direction of the light field in the cases of ( M ′ − M = ± 1, ξ = y ) and ( M ′ − M = ± 2, ξ = x ). We show that the directional dependence of the coupling leads to the directional dependence of spontaneous emission into guided modes. We find that the directional dependence of the atom-field coupling in the case of quadrupole transitions is not entirely due to spin-orbit coupling of light: there are some other contributions resulting from the gradient of the spatial phase factor of the field.

[1]  Síle Nic Chormaic,et al.  Observation of the 87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofibre , 2020, New Journal of Physics.

[2]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[3]  M. Sadgrove,et al.  Nanofiber quantum photonics , 2018, Journal of Optics.

[4]  F. Schmidt-Kaler,et al.  Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron , 2017, 1709.05571.

[5]  A. Afanasev,et al.  Circular dichroism of twisted photons in non-chiral atomic matter , 2017, 1704.07495.

[6]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[7]  Ulrich G. Poschinger,et al.  Transfer of optical orbital angular momentum to a bound electron , 2016, Nature Communications.

[8]  A. Mukherjee,et al.  High-multipole excitations of hydrogen-like atoms by twisted photons near a phase singularity , 2016, 1602.06640.

[9]  Vandna Gokhroo,et al.  Optical nanofibres and neutral atoms , 2015, 1512.02753.

[10]  Gerd Leuchs,et al.  From transverse angular momentum to photonic wheels , 2015, Nature Photonics.

[11]  T. Thundat,et al.  Universal spin-momentum locked optical forces , 2015, 1511.02305.

[12]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[13]  Franco Nori,et al.  Transverse and longitudinal angular momenta of light , 2015, 1504.03113.

[14]  L. Kuipers,et al.  Nanophotonic control of circular dipole emission , 2015, Nature Communications.

[15]  A. Rauschenbeutel,et al.  Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide , 2014, Nature Communications.

[16]  M. Germann,et al.  Observation of electric-dipole-forbidden infrared transitions in cold molecular ions , 2014, Nature Physics.

[17]  A. Rauschenbeutel,et al.  Chiral nanophotonic waveguide interface based on spin-orbit interaction of light , 2014, Science.

[18]  Franco Nori,et al.  Extraordinary momentum and spin in evanescent waves , 2013, Nature Communications.

[19]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[20]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[21]  H. Freedhoff Master equation for electric quadrupole transitions , 1989 .

[22]  J. Nilsen,et al.  Oscillator strengths of the first forbidden lines of rubidium , 1978 .

[23]  K. Niemax Oscillator strengths of Rb quadrupole lines , 1977 .

[24]  H. Freedhoff Classical Oscillator Model for Electric Quadrupole Transitions , 1971 .

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  C. Raman The Angular Momentum of Light. , 1931, Nature.