An efficient quadrilateral element for plate bending analysis

A simple, shear flexible, quadrilateral plate element is developed based on the Hellinger/Reissner mixed variational principle with independently assumed displacement and stress fields. The crucial point of the selection of appropriate stress parameters is emphasized in the formulation. For this purpose, a set of guidelines is formulated based on the following considerations: (i) suppression of all kinematic deformation modes, (ii) the element has a favourable value for the constraint index in the thin plate limit, (iii) element properties are frame-invariant. For computer implementation the components of the element stiffness matrix are evaluated analytically using the symbolic manipulation package MACSYMA. The effectiveness and practical usefulness of the proposed element are demonstrated by the numerical results of a variety of problems involving thin and moderately thick plates under different loading and support conditions.

[1]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[2]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[3]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[4]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[5]  R. J. Alwood,et al.  A polygonal finite element for plate bending problems using the assumed stress approach , 1969 .

[6]  Theodore H. H. Pian,et al.  Finite elements based on consistently assumed stresses and displacements , 1985 .

[7]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[8]  Alexander Tessler,et al.  A priori identification of shear locking and stiffening in triangular Mindlin elements , 1985 .

[9]  Eduardo N. Dvorkin,et al.  Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .

[10]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[11]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[12]  Robert L. Spilker,et al.  Invariant 8‐node hybrid‐stress elements for thin and moderately thick plates , 1982 .

[13]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[14]  Ted Belytschko,et al.  A stabilization matrix for the bilinear mindlin plate element , 1981 .

[15]  Ted Belytschko,et al.  A consistent control of spurious singular modes in the 9-node Lagrange element for the laplace and mindlin plate equations , 1984 .

[16]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[17]  S. W. Lee,et al.  Mixed formulation finite elements for mindlin theory plate bending , 1982 .

[18]  Robert L. Spilker,et al.  Three‐dimensional hybrid‐stress isoparametric quadratic displacement elements , 1982 .

[19]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[20]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[21]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[22]  Robert D. Cook,et al.  Two hybrid elements for analysis of thick, thin and sandwich plates , 1972 .

[23]  Thomas J. R. Hughes,et al.  An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element , 1983 .

[24]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[25]  J. Jirousek,et al.  A contribution to evaluation of shear forces and reactions of mindlin plates by using isoparametric elements , 1984 .

[26]  Robert L. Spilker,et al.  The hybrid‐stress model for thin plates , 1980 .

[27]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[28]  Ted Belytschko,et al.  A simple triangular curved shell element , 1984 .

[29]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[30]  S. W. Lee,et al.  A six‐node finite element for plate bending , 1985 .

[31]  Thomas J. R. Hughes,et al.  Recent developments in computer methods for structural analysis , 1980 .

[32]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[33]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[34]  T. Hughes,et al.  A three-node mindlin plate element with improved transverse shear , 1985 .

[35]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[36]  Theodore H. H. Pian,et al.  Alternative ways for formulation of hybrid stress elements , 1982 .

[37]  M. Crisfield A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .

[38]  Isaac Fried,et al.  Triangular, nine-degrees-of-freedom, $C^0$ plate bending element of quadratic accuracy , 1973 .

[39]  John Robinson,et al.  LORA—an accurate four node stress plate bending element , 1979 .

[40]  Theodore H. H. Pian,et al.  Hybrid SemiLoof elements for plates and shells based upon a modified Hu-Washizu principle , 1984 .

[41]  E. Kosko,et al.  Static and dynamic applications of a high- precision triangular plate bending element , 1969 .

[42]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[43]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[44]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[45]  L. Morley Skew plates and structures , 1963 .

[46]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[47]  Robert L. Spilker,et al.  A Serendipity cubic‐displacement hybrid‐stress element for thin and moderately thick plates , 1980 .

[48]  T. Belytschko,et al.  A stabilization procedure for the quadrilateral plate element with one-point quadrature , 1983 .

[49]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[50]  D. L. Flaggs,et al.  An operational procedure for the symbolic analysis of the finite element method , 1984 .

[51]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[52]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[53]  Tarun Kant,et al.  Mindlin plate analysis by segmentation method , 1983 .

[54]  Isaac Fried,et al.  Shear in C0 and C1 ending finite elements , 1973 .

[55]  D. L. Flaggs,et al.  A Fourier analysis of spurious mechanisms and locking in the finite element method , 1984 .

[56]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[57]  G. A. Butlin,et al.  A compatible triangular plate bending finite element , 1970 .

[58]  A. Pifko,et al.  Aspects of a simple triangular plate bending finite element , 1980 .

[59]  K. Bell A refined triangular plate bending finite element , 1969 .

[60]  P. G. Bergan,et al.  Quadrilateral plate bending elements with shear deformations , 1984 .

[61]  T. Belytschko,et al.  A C0 triangular plate element with one‐point quadrature , 1984 .

[62]  C. C. Dai,et al.  A triangular finite element for thin plates and shells , 1985 .

[63]  Robert L. Spilker,et al.  A hybrid-stress quadratic serendipity displacement mindlin plate bending element , 1980 .