Quantile tomography: using quantiles with multivariate data
暂无分享,去创建一个
[1] Roberto Lucchetti,et al. Uniform convergence of probability measures: topological criteria , 1994 .
[2] L. Fatti,et al. Bayesian updating in reference centile charts , 1998 .
[3] On a Conjecture Concerning a Theorem of Cramér and Wold , 1997 .
[4] Discussion: Conditional growth charts , 2006, math/0702636.
[5] Confidence bands for bivariate quantiles , 1982 .
[6] Charles F. Manski,et al. Analog estimation methods in econometrics , 1988 .
[7] I. Mizera. On depth and deep points: a calculus , 2002 .
[8] Gleb A. Koshevoy,et al. The Tukey Depth Characterizes the Atomic Measure , 2002 .
[9] Robert Serfling,et al. Quantile functions for multivariate analysis: approaches and applications , 2002 .
[10] 謙太郎 野間口,et al. 仮説に制約条件がある場合の Bivariate Sign Test , 1986 .
[11] Nicole A. Lazar,et al. Statistics of Extremes: Theory and Applications , 2005, Technometrics.
[12] J. Aronson. Francis Galton and the invention of terms for quantiles. , 2001, Journal of clinical epidemiology.
[13] Guenther Walther,et al. Monte Carlo sampling in dual space for approximating the empirical halfspace distance , 1997 .
[14] P. Rousseeuw,et al. The Bagplot: A Bivariate Boxplot , 1999 .
[15] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[16] J. Tukey. Mathematics and the Picturing of Data , 1975 .
[17] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[18] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[19] P. Rousseeuw,et al. Halfspace Depth and Regression Depth Characterize the Empirical Distribution , 1999 .
[20] A. Goldberger. Topics in regression analysis , 1969 .
[21] F. Galton. I. Co-relations and their measurement, chiefly from anthropometric data , 1889, Proceedings of the Royal Society of London.
[22] G. Shorack. Probability for Statisticians , 2000 .
[23] Michael B. Metzger. Problems with probabilities , 2010 .
[24] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[25] R. F.,et al. Mathematical Statistics , 1944, Nature.
[26] Yijun Zuo,et al. Smooth depth contours characterize the underlying distribution , 2010, J. Multivar. Anal..
[27] G. Wang,et al. Convergence of depth contours for multivariate datasets , 1997 .
[28] I. Mizera,et al. Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods , 2002 .
[29] R. Koenker,et al. M Estimation of Multivariate Regressions , 1990 .
[30] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[31] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[32] Linglong Kong. On Multivariate Quantile Regression: Directional Approach and Application with Growth Charts , 2009 .
[33] Rob J Hyndman,et al. Sample Quantiles in Statistical Packages , 1996 .
[34] F. Y. Edgeworth. VIII. Exercises in the calculation of errors , 1893 .
[35] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[36] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[37] R. Koenker,et al. Quantile regression methods for reference growth charts , 2006, Statistics in medicine.
[38] Katherine Campbell. Statistical Analysis of Extreme Values , 2002, Technometrics.
[39] XLVI. Problems in probabilities , 1886 .
[40] P. Rousseeuw,et al. The depth function of a population distribution , 1999, Metrika.
[41] A. Pere. Comparison of two methods for transforming height and weight to Normality , 2000, Annals of human biology.
[42] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[43] Ying Wei. An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts , 2008 .
[44] Emanuel Parzen,et al. Quantile Probability and Statistical Data Modeling , 2004 .
[45] R. Theodorescu,et al. Halfplane trimming for bivariate distributions , 1994 .