Quantile tomography: using quantiles with multivariate data

The use of quantiles to obtain insights about multivariate data is ad- dressed. It is argued that incisive insights can be obtained by considering direc- tional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way to condense this kind of information; it is demonstrated that they are essentially halfspace (Tukey) depth levels sets, coinciding for elliptic distri- butions (in particular multivariate normal) with density contours. Relevant ques- tions concerning their indexing, the possibility of the reverse retrieval of directional quantile information, invariance with respect to affine transformations, and approx- imation/asymptotic properties are studied. It is argued that analysis in terms of directional quantiles and their envelopes offers a straightforward probabilistic inter- pretation and thus conveys a concrete quantitative meaning; the directional defini- tion can be adapted to elaborate frameworks, like estimation of extreme quantiles and directional quantile regression, the regression of depth contours on covariates. The latter facilitates the construction of multivariate growth charts—the question that motivated this development.

[1]  Roberto Lucchetti,et al.  Uniform convergence of probability measures: topological criteria , 1994 .

[2]  L. Fatti,et al.  Bayesian updating in reference centile charts , 1998 .

[3]  On a Conjecture Concerning a Theorem of Cramér and Wold , 1997 .

[4]  Discussion: Conditional growth charts , 2006, math/0702636.

[5]  Confidence bands for bivariate quantiles , 1982 .

[6]  Charles F. Manski,et al.  Analog estimation methods in econometrics , 1988 .

[7]  I. Mizera On depth and deep points: a calculus , 2002 .

[8]  Gleb A. Koshevoy,et al.  The Tukey Depth Characterizes the Atomic Measure , 2002 .

[9]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[10]  謙太郎 野間口,et al.  仮説に制約条件がある場合の Bivariate Sign Test , 1986 .

[11]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[12]  J. Aronson Francis Galton and the invention of terms for quantiles. , 2001, Journal of clinical epidemiology.

[13]  Guenther Walther,et al.  Monte Carlo sampling in dual space for approximating the empirical halfspace distance , 1997 .

[14]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[15]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[16]  J. Tukey Mathematics and the Picturing of Data , 1975 .

[17]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[18]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[19]  P. Rousseeuw,et al.  Halfspace Depth and Regression Depth Characterize the Empirical Distribution , 1999 .

[20]  A. Goldberger Topics in regression analysis , 1969 .

[21]  F. Galton I. Co-relations and their measurement, chiefly from anthropometric data , 1889, Proceedings of the Royal Society of London.

[22]  G. Shorack Probability for Statisticians , 2000 .

[23]  Michael B. Metzger Problems with probabilities , 2010 .

[24]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[25]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[26]  Yijun Zuo,et al.  Smooth depth contours characterize the underlying distribution , 2010, J. Multivar. Anal..

[27]  G. Wang,et al.  Convergence of depth contours for multivariate datasets , 1997 .

[28]  I. Mizera,et al.  Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods , 2002 .

[29]  R. Koenker,et al.  M Estimation of Multivariate Regressions , 1990 .

[30]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[31]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[32]  Linglong Kong On Multivariate Quantile Regression: Directional Approach and Application with Growth Charts , 2009 .

[33]  Rob J Hyndman,et al.  Sample Quantiles in Statistical Packages , 1996 .

[34]  F. Y. Edgeworth VIII. Exercises in the calculation of errors , 1893 .

[35]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[36]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[37]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[38]  Katherine Campbell Statistical Analysis of Extreme Values , 2002, Technometrics.

[39]  XLVI. Problems in probabilities , 1886 .

[40]  P. Rousseeuw,et al.  The depth function of a population distribution , 1999, Metrika.

[41]  A. Pere Comparison of two methods for transforming height and weight to Normality , 2000, Annals of human biology.

[42]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .

[43]  Ying Wei An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts , 2008 .

[44]  Emanuel Parzen,et al.  Quantile Probability and Statistical Data Modeling , 2004 .

[45]  R. Theodorescu,et al.  Halfplane trimming for bivariate distributions , 1994 .