Hierarchical Geodesic Models in Diffeomorphisms

[1]  Marc Niethammer,et al.  Splines for Diffeomorphic Image Regression , 2014, MICCAI.

[2]  P. Thomas Fletcher,et al.  An efficient parallel algorithm for hierarchical geodesic models in diffeomorphisms , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[3]  P. Fletcher,et al.  Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds , 2013, International Journal of Computer Vision.

[4]  Guido Gerig,et al.  Geodesic Image Regression with a Sparse Parameterization of Diffeomorphisms , 2013, GSI.

[5]  P. Thomas Fletcher,et al.  Bayesian Estimation of Regularization and Atlas Building in Diffeomorphic Image Registration , 2013, IPMI.

[6]  P. Thomas Fletcher,et al.  A Hierarchical Geodesic Model for Diffeomorphic Longitudinal Shape Analysis , 2013, IPMI.

[7]  P. Thomas Fletcher,et al.  A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[8]  Guido Gerig,et al.  Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling , 2012, MICCAI.

[9]  Martin Styner,et al.  Metamorphic Geodesic Regression , 2012, MICCAI.

[10]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[11]  P. Thomas Fletcher,et al.  Sasaki metrics for analysis of longitudinal data on manifolds , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  P. Thomas Fletcher,et al.  Polynomial Regression on Riemannian Manifolds , 2012, ECCV.

[13]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[14]  Nicholas Ayache,et al.  Mapping the Effects of Aβ 1 - 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields , 2011, MICCAI.

[15]  John G. Csernansky,et al.  Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults , 2010, Journal of Cognitive Neuroscience.

[16]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[17]  David Mumford,et al.  Sectional Curvature in Terms of the Cometric, with Applications to the Riemannian Manifolds of Landmarks , 2010, SIAM J. Imaging Sci..

[18]  L. Younes Shapes and Diffeomorphisms , 2010 .

[19]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[20]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[21]  Michael I. Miller,et al.  Transport of Relational Structures in Groups of Diffeomorphisms , 2008, Journal of Mathematical Imaging and Vision.

[22]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  N. Raz,et al.  Differential Aging of the Brain: Patterns, Cognitive Correlates and Modifiers , 2022 .

[24]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[25]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[26]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[27]  Nick C Fox,et al.  Imaging cerebral atrophy: normal ageing to Alzheimer's disease , 2004, The Lancet.

[28]  Suzanne E. Welcome,et al.  Mapping cortical change across the human life span , 2003, Nature Neuroscience.

[29]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[30]  U. Grenander,et al.  Statistical methods in computational anatomy , 1997, Statistical methods in medical research.

[31]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[32]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[33]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[34]  Seymour Geisser,et al.  Statistical Principles in Experimental Design , 1963 .

[35]  C. Chevalley Theory of Lie Groups , 1946 .

[36]  D'arcy W. Thompson On Growth and Form , 1917, Nature.

[37]  Nicholas Ayache,et al.  Disentangling the normal aging from the pathological Alzheimer's disease progression on cross-sectional structural MR images , 2012 .

[38]  C. Barnes,et al.  Neural plasticity in the ageing brain , 2006, Nature Reviews Neuroscience.

[39]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[40]  Paul M. Thompson,et al.  2 A Framework for Computational Anatomy , 2001 .

[41]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[42]  J. Frank Adams,et al.  Lectures on Lie groups , 1969 .

[43]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[44]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.