Controlled hierarchical assembly of spider silk-DNA chimeras into ribbons and raft-like morphologies.

Spider silk-DNA conjugates comprising the recombinant spider silk protein eADF4(C16) and short oligonucleotides were arranged in a linear antiparallel and parallel as well as in a branched manner via designed complementarity of the DNA moieties. After cross-β fibril self-assembly, temperature-induced annealing of the DNA moieties triggered fibril association into ribbons, composed of aligned nanofibrils, and rafts composed of ribbons ordered into sharply bordered, squared fibrous microstructures. The formation of the superstructures was clearly dependent on the individual silk-DNA conjugate. A combination of 5'-conjugated silk moieties via complementary nucleic acids enhanced fibril association, whereas mixing complementary 5'- and 3'-silk conjugates inhibited the formation of higher-order structures.

[1]  M. Fändrich,et al.  Protein chemistry: catalytic amyloid fibrils. , 2014, Nature chemistry.

[2]  A. Herrmann,et al.  DNA block copolymers: functional materials for nanoscience and biomedicine. , 2012, Accounts of chemical research.

[3]  Markus J Buehler,et al.  Nanomechanics of functional and pathological amyloid materials. , 2011, Nature nanotechnology.

[4]  A. N. Semenov,et al.  Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Andrew M. Smith,et al.  Designing peptide based nanomaterials. , 2008, Chemical Society reviews.

[6]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[7]  David L. Kaplan,et al.  Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy , 2006 .

[8]  Andrew J. Senesi,et al.  Assembly and organization processes in DNA-directed colloidal crystallization , 2009, Proceedings of the National Academy of Sciences.

[9]  Zhibin Guan,et al.  Modular design in natural and biomimetic soft materials. , 2011, Angewandte Chemie.

[10]  Shiri Stempler,et al.  Self-assembled arrays of peptide nanotubes by vapour deposition. , 2009, Nature nanotechnology.

[11]  David L. Kaplan,et al.  Sequence–Structure–Property Relationships of Recombinant Spider Silk Proteins: Integration of Biopolymer Design, Processing, and Modeling , 2013 .

[12]  Moria Kwiat,et al.  Large-scale ordered 1D-nanomaterials arrays: Assembly or not? , 2013 .

[13]  Ehud Gazit,et al.  Amyloids: not only pathological agents but also ordered nanomaterials. , 2008, Angewandte Chemie.

[14]  Giovanni Dietler,et al.  Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. , 2010, Nature nanotechnology.

[15]  David Barlam,et al.  Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. , 2005, Nano letters.

[16]  L. Serpell,et al.  Spider silk and amyloid fibrils: a structural comparison. , 2007, Macromolecular bioscience.

[17]  T. Scheibel,et al.  Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. , 2014, Journal of structural biology.

[18]  T. Scheibel,et al.  Nanomaterial building blocks based on spider silk-oligonucleotide conjugates. , 2014, ACS nano.

[19]  Chad A Mirkin,et al.  Spherical nucleic acids. , 2012, Journal of the American Chemical Society.

[20]  D. Ridgley,et al.  Evolution of the amyloid fiber over multiple length scales. , 2013, ACS nano.

[21]  H. Jaeger,et al.  Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[23]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[24]  F. Kremer,et al.  Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films , 2011 .

[25]  Olesia V. Moroz,et al.  Short peptides self-assemble to produce catalytic amyloids , 2014, Nature chemistry.

[26]  Robert D. Barish,et al.  DNA-linker-induced surface assembly of ultra dense parallel single walled carbon nanotube arrays. , 2012, Nano letters.

[27]  K. Yager,et al.  Linear mesostructures in DNA--nanorod self-assembly. , 2013, ACS nano.

[28]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[29]  S. Gorb,et al.  An engineered spider silk protein forms microspheres. , 2008, Angewandte Chemie.

[30]  Michele Vendruscolo,et al.  Metastability of native proteins and the phenomenon of amyloid formation. , 2011, Journal of the American Chemical Society.

[31]  R. Mezzenga,et al.  General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. , 2011, Biomacromolecules.

[32]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[33]  Michele Vendruscolo,et al.  Atomic structure and hierarchical assembly of a cross-β amyloid fibril , 2013, Proceedings of the National Academy of Sciences.

[34]  Itamar Willner,et al.  DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. , 2013, ACS nano.

[35]  Chad A Mirkin,et al.  A General Approach to DNA- Programmable Atom Equivalents* , 2020, Spherical Nucleic Acids.

[36]  C. MacPhee,et al.  Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials. , 2009, Journal of the American Chemical Society.

[37]  Alexander K. Buell,et al.  Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. , 2010, Nature nanotechnology.

[38]  David L Kaplan,et al.  Self-assembly of genetically engineered spider silk block copolymers. , 2009, Biomacromolecules.

[39]  Miao-Ping Chien,et al.  Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. , 2012, Chemical science.

[40]  T. Scheibel,et al.  Spider Silk Capsules as Protective Reaction Containers for Enzymes , 2014 .

[41]  E. Gazit,et al.  Controlled patterning of aligned self-assembled peptide nanotubes , 2006, Nature nanotechnology.

[42]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[43]  Ti-Hsuan Ku,et al.  Smart lipids for programmable nanomaterials. , 2010, Nano letters.

[44]  Chad A Mirkin,et al.  Stepwise evolution of DNA-programmable nanoparticle superlattices. , 2013, Angewandte Chemie.

[45]  Michele Vendruscolo,et al.  From macroscopic measurements to microscopic mechanisms of protein aggregation. , 2012, Journal of molecular biology.

[46]  R. Rudolph,et al.  Primary structure elements of spider dragline silks and their contribution to protein solubility. , 2004, Biochemistry.

[47]  Lucio Isa,et al.  Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces , 2013, Nature Communications.

[48]  Christopher M Dobson,et al.  Cytochrome display on amyloid fibrils. , 2006, Journal of the American Chemical Society.

[49]  R. Finke,et al.  Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. , 2009, Biochimica et biophysica acta.

[50]  K. Ngo,et al.  Self-assembling DNA-peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide. , 2012, Chemical communications.

[51]  C. Niemeyer Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. , 2010, Angewandte Chemie.

[52]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[53]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.