A combined r-h adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces

An r-h adaptive scheme has been proposed and formulated for analysis of bimaterial interface problems using adaptive finite element method. It involves a combination of the configurational force based r-adaption with weighted laplacian smoothing and mesh enrichment by h-refinement. The Configurational driving force is evaluated by considering the weak form of the material force balance for bimaterial inerface problems. These forces assembled at nodes act as an indicator for r-adaption. A weighted laplacian smoothing is performed for smoothing the mesh. The h-adaptive strategy is based on a modifed weighted energy norm of error evaluated using supercovergent estimators. The proposed method applies specific non sliding interface strain compatibility requirements across inter material boundaries consistent with physical principles to obtain modified error estimators. The best sequence of combining r- and h-adaption has been evolved from numerical study. The study confirms that the proposed combined r-h adaption is more efficient than a purely h-adaptive approach and more flexible than a purely r-adaptive approach with better convergence characteristics and helps in obtaining optimal finite element meshes for a specified accuracy.

[1]  Javier Oliver,et al.  CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .

[2]  Ronald L. Huston,et al.  Finite element mesh refinement criteria for stress analysis , 1990 .

[3]  Noboru Kikuchi,et al.  Adaptive grid-design methods for finite delement analysis , 1986 .

[4]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[5]  Paul Steinmann,et al.  Structural optimization by simultaneous equilibration of spatial and material forces , 2005 .

[6]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[7]  Mark S. Shephard An algorithm for defining a single near-optimum mesh for multiple-load-case problems , 1980 .

[8]  O. Zienkiewicz,et al.  Analysis of the Zienkiewicz–Zhu a‐posteriori error estimator in the finite element method , 1989 .

[9]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[10]  S. Saxena,et al.  New guidelines for optimization of finite element solutions , 1989 .

[11]  Jung-Ho Cheng,et al.  Adaptive grid optimization for structural analysis—Geometry-based approach , 1993 .

[12]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[13]  Amirtham Rajagopal,et al.  A Performance Study on Configurational Force and Spring-Analogy Based Mesh Optimization Schemes , 2006 .

[14]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[15]  J. W. Bull,et al.  Theoretical formulations for adaptive finite element computations , 1995 .

[16]  W. Prager A note on the optimal choice of finite element grids , 1975 .

[17]  G. Maugin "Material" mechanics of materials , 2002 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[19]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting , 2001 .

[20]  Pururav Thoutireddy Variational arbitrary Lagrangian-Eulerian method , 2003 .

[21]  W. E. Carroll Inclusive criteria for optimum grid generation in the discrete analysis technique , 1976 .

[22]  I. Grosse,et al.  Effective stress-based finite element error estimation for composite bodies , 1993 .

[23]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[24]  Carlos A. Felippa,et al.  Numerical experiments in finite element grid optimization by direct energy search , 1977 .

[25]  O. C. Zienkiewicz,et al.  Adaptive FEM computation of forming processes—Application to porous and non‐porous materials , 1990 .

[26]  Philippe Marin,et al.  Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .

[27]  Dietmar Gross,et al.  On configurational forces in the context of the finite element method , 2002 .

[28]  R. Mueller,et al.  Use of material forces in adaptive finite element methods , 2004 .

[29]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[30]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[31]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[32]  Gérard A. Maugin,et al.  Material Forces: Concepts and Applications , 1995 .

[33]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .

[34]  D. J. Turcke,et al.  Guidelines for selecting finite element grids based on an optimization study , 1974 .

[35]  D. Scott McRae,et al.  r-Refinement grid adaptation algorithms and issues , 2000 .

[36]  P. Podio-Guidugli,et al.  Configurational forces: are they needed? , 2002 .

[37]  P. Marcal,et al.  An energy basis for mesh refinement of structural continua , 1977 .

[38]  Noboru Kikuchi,et al.  A method of grid optimization for finite element methods , 1983 .

[39]  M. Ortiz,et al.  A variational r‐adaption and shape‐optimization method for finite‐deformation elasticity , 2004 .

[40]  Paul Steinmann,et al.  Material forces in open system mechanics , 2004 .

[41]  Paul Steinmann,et al.  An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications , 2004 .

[42]  Rachid Touzani,et al.  MESH r-ADAPTATION FOR UNILATERAL CONTACT PROBLEMS † , 2002 .

[43]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[44]  M. Gurtin,et al.  On configurational inertial forces at a phase interface , 1996 .

[45]  Dietmar Gross,et al.  Configurational forces : morphology evolution and finite elements , 2002 .

[46]  Harm Askes,et al.  An rh -adaptive strategy based on domain subdivision and error assessment , 2001 .

[47]  Antonio Rodríguez-Ferran,et al.  A combined rh‐adaptive scheme based on domain subdivision. Formulation and linear examples , 2001 .