Metallic monoboronyl compounds: Prediction of their structure and comparison with the cyanide analogues

A theoretical study of monoboronyls of different metals has been carried out. We have chosen Mg as representative of s‐block elements, Al for the p‐block, and Group 11 metals (Cu, Ag, and Au) for the d‐block. Different behaviors are observed: bonding through the oxygen atom is preferred in the case of Al, for all Group 11 monoboronyls bonding through the boron atom prevails and both interactions give rise to almost isoenergetic compounds in the case of Mg. Predictions for the spectroscopic parameters relevant for rotational and vibrational spectroscopy of the different competitive species are provided. Al and Group 11 boronyls have relatively high dissociation energies, whereas Mg boronyl has moderate dissociation energy. The molecular structure of metal boronyls has been rationalized through an analysis of the bonding. The similarities and differences between metal boronyls and their isoelectronic cyanide analogues have been discussed. © 2017 Wiley Periodicals, Inc.

[1]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[2]  Rei Okuda,et al.  A theoretical study of FeNC in the 6Δ electronic ground state , 2006 .

[3]  F. E. Jorge,et al.  Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties , 2010 .

[4]  Timothy J. Lee,et al.  A procedure for computing accurate ab initio quartic force fields: Application to HO2+ and H2O. , 2008, The Journal of chemical physics.

[5]  H. Schaefer,et al.  Binuclear iron boronyl carbonyls isoelectronic with the well-known decacarbonyldimanganese , 2012 .

[6]  J. Cernicharo,et al.  Detection of MgCN in IRC +10216: A New Metal-bearing Free Radical , 1995 .

[7]  R. King,et al.  Iron carbonyl thioboronyls: effect of substitution of sulfur for oxygen in the viability of binuclear complexes toward dissociation reactions , 2014, Theoretical Chemistry Accounts.

[8]  P. Dagdigian,et al.  Observation of the FeNC molecule by laser fluorescence excitation spectroscopy , 2001 .

[9]  A. G. Sharpe The chemistry of cyano complexes of the transition metals , 1976 .

[10]  Lai‐Sheng Wang,et al.  Boronyls as key structural units in boron oxide clusters: B(BO)2- and B(BO)3-. , 2007, Journal of the American Chemical Society.

[11]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[12]  G. Frenking,et al.  Molecular structures, bond energies, and bonding analysis of group 11 cyanides TM(CN) and isocyanides TM(NC) (TM = Cu, Ag, Au) , 2003 .

[13]  P. M. Sheridan,et al.  Further studies of 3d transition metal cyanides: The pure rotational spectrum of NiCN (X 2Δi) , 2003 .

[14]  R. King,et al.  Controlling the Reactivity of the Boronyl Group in Platinum Complexes toward Cyclodimerization: A Theoretical Survey. , 2015, Inorganic chemistry.

[15]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[16]  Lucy M Ziurys,et al.  The first precise molecular structure of a monomeric transition metal cyanide, copper(I) cyanide. , 2002, Journal of the American Chemical Society.

[17]  Mihály Kállay,et al.  Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory. , 2006, The Journal of chemical physics.

[18]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[19]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[20]  L. Ziurys,et al.  DETECTION OF FeCN (X4Δi) IN IRC+10216: A NEW INTERSTELLAR MOLECULE , 2011 .

[21]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[22]  F. E. Jorge,et al.  Gaussian basis set of double zeta quality for atoms K through Kr: Application in DFT calculations of molecular properties , 2008, J. Comput. Chem..

[23]  Lai‐Sheng Wang,et al.  B2(BO)2(2-)-diboronyl diborene: a linear molecule with a triple boron-boron bond. , 2008, Journal of the American Chemical Society.

[24]  Lai‐Sheng Wang,et al.  Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds. , 2014, Accounts of chemical research.

[25]  S. Natarajan,et al.  Charge density analysis of a pentaborate ion in an ammonium borate: toward the understanding of topological features in borate minerals. , 2011, The journal of physical chemistry. A.

[26]  P. M. Sheridan,et al.  Characterizing the later 3d cyanides: the submillimeter spectrum of CoCN(X 3Phi i). , 2004, The Journal of chemical physics.

[27]  C. Bauschlicher XCN, X Ag, Cu and Ni, a model for CN on a metal surface , 1985 .

[28]  C. Marsden Abinitio correlated potential energy surfaces for monomeric sodium and potassium cyanides , 1982 .

[29]  T. Takao,et al.  A triruthenium complex capped by a triply bridging oxoboryl ligand. , 2013, Angewandte Chemie.

[30]  P. Jensen,et al.  A Theoretical Study of MgNC and MgCN in the X̃2Σ+ Electronic State , 2002 .

[31]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[32]  W. J. Orville-Thomas,et al.  Pauling's legacy : modern modelling of the chemical bond , 1999 .

[33]  H. Schaefer,et al.  The low-lying electronic states of nickel cyanide and isocyanide: A theoretical investigation. , 2006, The Journal of chemical physics.

[34]  P. Redondo,et al.  Cyanides and isocyanides of first-row transition metals: molecular structure, bonding, and isomerization barriers. , 2007, The journal of physical chemistry. A.

[35]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[36]  Gerry,et al.  Hyperfine Constants and Nuclear Shieldings from the Microwave Spectra of FBO, ClBO, and FBS. , 1998, Journal of molecular spectroscopy.

[37]  Nathan J. DeYonker,et al.  Low-lying electronic states of FeNC and FeCN: a theoretical journey into isomerization and quartet/sextet competition. , 2004, The Journal of chemical physics.

[38]  K. Kawaguchi,et al.  Laboratory Spectroscopy of MgNC: The First Radioastronomical Identification of Mg-bearing Molecule , 1993 .

[39]  On the chemical bonding of gold in auro-boron oxide clusters AunBO- (n = 1-3). , 2007, The journal of physical chemistry. A.

[40]  M. R. Philpott,et al.  The nature of the bonding of CN to metals and organic molecules , 1987 .

[41]  A. J. Merer,et al.  The Electronic Spectrum of NiCN in the Visible Region , 2002 .

[42]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[43]  T. Steimle,et al.  Detection of Sodium Cyanide (NaCN) in IRC 10216 , 1994 .

[44]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[45]  M. Heckert,et al.  Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations , 2005 .

[46]  R. King,et al.  The versatility of the boronyl (BO) and fluoroborylene (BF) ligands in binuclear cyclopentadienylpalladium chemistry , 2013 .

[47]  K. Kawaguchi,et al.  Infrared diode laser and microwave spectroscopy of an unstable molecule: ClBO , 1982 .

[48]  N. DeYonker What a difference a decade has not made: the murky electronic structure of iron monocyanide (FeCN) and iron monoisocyanide (FeNC). , 2015, The journal of physical chemistry. A.

[49]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[50]  H. Schaefer,et al.  Boronyl ligand as a member of the isoelectronic series BO(-) → CO → NO(+): viable cobalt carbonyl boronyl derivatives? , 2010, Inorganic chemistry.

[51]  L. Ziurys,et al.  Fourier-transform microwave spectroscopy of FeCN (X4Δi): Confirmation of the quartet electronic ground state , 2011 .

[52]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[53]  R. King,et al.  Diverse bonding modes and coupling reactions of the boronyl ligand in binuclear cyclopentadienyl cobalt derivatives: Analogies with isoelectronic binuclear cyclopentadienyliron carbonyls , 2014 .

[54]  R. King,et al.  Major differences between the binuclear manganese boronyl carbonyl Mn2(BO)2(CO)9 and its isoelectronic chromium carbonyl analogue Cr2(CO)11. , 2013, The journal of physical chemistry. A.

[55]  L. Ziurys,et al.  Millimeter-wave rotational spectroscopy of FeCN (X 4Δi) and FeNC (X 6Δi): determining the lowest energy isomer. , 2011, The Journal of chemical physics.

[56]  E. Clementi,et al.  Study of the electronic structure of molecules. XVIII. Interaction between a lithium atom and a cyano group as an example of a polytopic bond , 1973 .

[57]  Holger Braunschweig,et al.  Oxoboryl Complexes: Boron−Oxygen Triple Bonds Stabilized in the Coordination Sphere of Platinum , 2010, Science.

[58]  Lai‐Sheng Wang,et al.  Vibrationally resolved photoelectron spectra of CuCN− and AgCN− and ab initio studies of the structure and bonding in CuCN , 2000 .

[59]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[60]  J. Cernicharo,et al.  IDENTIFICATION OF KCN IN IRC+10216: EVIDENCE FOR SELECTIVE CYANIDE CHEMISTRY , 2010 .

[61]  Si‐Dian Li,et al.  Covalent Bonding in Au(BO)2− and Au(BS)2− , 2013, Journal of Cluster Science.

[62]  S. Sakaki,et al.  Theoretical study on the transition-metal oxoboryl complex: M-BO bonding nature, mechanism of the formation reaction, and prediction of a new oxoboryl complex. , 2012, Inorganic chemistry.

[63]  R. King,et al.  Prospects for three-electron donor boronyl (BO) ligands and dioxodiborene (B2O2) ligands as bridging groups in binuclear iron carbonyl derivatives. , 2012, Inorganic chemistry.

[64]  S. Petrie Structural Trends in the Monocyanides of the Second-Row Metal Ions Na+, Mgm+ (m = 1, 2), and Aln+ (n = 1−3) , 1996 .

[65]  Hunt,et al.  Infrared Diode Laser Spectrum of the nu(1) Fundamental Band of ClBO. , 2000, Journal of Molecular Spectroscopy.

[66]  H. Braunschweig,et al.  Reactivity of an oxoboryl complex toward fluorinated aryl boron reagents. , 2010, Chemical communications.

[67]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[68]  O. Sizova,et al.  Symmetry decomposition of quantum chemical bond orders , 2008 .

[69]  J. L. Highberger,et al.  More Metal Cyanide Species: Detection of AlNC (X 1Σ+) toward IRC +10216 , 2001 .

[70]  E. Baerends,et al.  Alternatives to the CO Ligand: Coordination of the Isolobal Analogues BF, BNH2, BN(CH3)2, and BO− in Mono‐ and Binuclear First‐Row Transition Metal Complexes , 1998 .

[71]  F. E. Jorge,et al.  All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations , 2013 .

[72]  M. Senent,et al.  Cyanide/isocyanide abundances in the interstellar medium - I. Theoretical spectroscopic characterization , 2012 .

[73]  R. Field,et al.  The pure rotational spectrum of CrCN (X  6 Σ +): an unexpected geometry and unusual spin interactions , 2007 .

[74]  L. Cederbaum,et al.  Methylboron Oxide, H3CBO†‡ , 1989 .

[75]  R. King,et al.  The versatility of the boronyl ligand in binuclear cyclopentadienylrhodium derivatives , 2013 .

[76]  M. A. Brewster,et al.  Rotational spectroscopy of 3d transition-metal cyanides: Millimeter-wave studies of ZnCN (X 2Σ+) , 2002 .