On‐line almost‐sure parameter estimation for partially observed discrete‐time linear systems with known noise characteristics

In this paper we discuss parameter estimators for fully and partially observed discrete-time linear stochastic systems (in state-space form) with known noise characteristics. We propose finite-dimensional parameter estimators that are based on estimates of summed functions of the state, rather than of the states themselves. We limit our investigation to estimation of the state transition matrix and the observation matrix. We establish almost-sure convergence results for our proposed parameter estimators using standard martingale convergence results, the Kronecker lemma and an ordinary differential equation approach. We also provide simulation studies which illustrate the performance of these estimators. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  Carlos S. Kubrusly,et al.  Stochastic approximation algorithms and applications , 1973, CDC 1973.

[2]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  John B. Moore,et al.  Persistence of Excitation in Linear Systems , 1985, 1985 American Control Conference.

[4]  Bart De Schutter,et al.  DAISY : A database for identification of systems , 1997 .

[5]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..

[6]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[7]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[8]  John B. Moore,et al.  Almost sure parameter estimation and convergence rates for hidden Markov models , 1997 .

[9]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[10]  Robert J. Elliott,et al.  A martingale Kronecker lemma and parameter estimation for linear systems , 1998, IEEE Trans. Autom. Control..

[11]  Nicholas Kalouptsidis,et al.  Adaptive system identification and signal processing algorithms , 1993 .

[12]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[13]  P. Meyer Martingales and Stochastic Integrals I , 1972 .

[14]  Jason J. Ford,et al.  On-line estimation of Allan variance parameters , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).

[15]  John B. Moore,et al.  Recursive prediction error algorithms without a stability test , 1980, Autom..

[16]  M. Sain Finite dimensional linear systems , 1972 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .

[19]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[20]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[21]  Harold J. Kushner,et al.  Approximation and Weak Convergence Methods for Random Processes , 1984 .

[22]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[23]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[24]  L. Gerencsér Rate of convergence of recursive estimators , 1992 .

[25]  Robert J. Elliott,et al.  Finite dimensional filters for ML estimation of discrete-time Gauss-Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[26]  L. Tong,et al.  Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.

[27]  Jae S. Lim,et al.  Advanced topics in signal processing , 1987 .

[28]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .