On‐line almost‐sure parameter estimation for partially observed discrete‐time linear systems with known noise characteristics
暂无分享,去创建一个
[1] Carlos S. Kubrusly,et al. Stochastic approximation algorithms and applications , 1973, CDC 1973.
[2] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[3] John B. Moore,et al. Persistence of Excitation in Linear Systems , 1985, 1985 American Control Conference.
[4] Bart De Schutter,et al. DAISY : A database for identification of systems , 1997 .
[5] T. Wigren. Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..
[6] John B. Moore,et al. Hidden Markov Models: Estimation and Control , 1994 .
[7] Boris Polyak,et al. Acceleration of stochastic approximation by averaging , 1992 .
[8] John B. Moore,et al. Almost sure parameter estimation and convergence rates for hidden Markov models , 1997 .
[9] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[10] Robert J. Elliott,et al. A martingale Kronecker lemma and parameter estimation for linear systems , 1998, IEEE Trans. Autom. Control..
[11] Nicholas Kalouptsidis,et al. Adaptive system identification and signal processing algorithms , 1993 .
[12] E. Hannan,et al. The statistical theory of linear systems , 1989 .
[13] P. Meyer. Martingales and Stochastic Integrals I , 1972 .
[14] Jason J. Ford,et al. On-line estimation of Allan variance parameters , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).
[15] John B. Moore,et al. Recursive prediction error algorithms without a stability test , 1980, Autom..
[16] M. Sain. Finite dimensional linear systems , 1972 .
[17] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[18] B. Anderson,et al. Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .
[19] Bart De Moor,et al. Subspace algorithms for the stochastic identification problem, , 1993, Autom..
[20] Pravin Varaiya,et al. Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .
[21] Harold J. Kushner,et al. Approximation and Weak Convergence Methods for Random Processes , 1984 .
[22] J. Neveu,et al. Discrete Parameter Martingales , 1975 .
[23] P. Kumar,et al. Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.
[24] L. Gerencsér. Rate of convergence of recursive estimators , 1992 .
[25] Robert J. Elliott,et al. Finite dimensional filters for ML estimation of discrete-time Gauss-Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[26] L. Tong,et al. Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.
[27] Jae S. Lim,et al. Advanced topics in signal processing , 1987 .
[28] Tamer Basar,et al. Analysis of Recursive Stochastic Algorithms , 2001 .