A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems

We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor, over an unstructured simplicial mesh of the space domain by means of the piecewise linear nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. Checking the local Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious oscillations in the convection-dominated case. This technique also ensures the validity of the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove the convergence of the scheme, only supposing the shape regularity condition for the original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three), locally conservative, efficient, and stable, which is confirmed by numerical experiments.

[1]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[2]  John D. Towers,et al.  Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient , 2002 .

[3]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[4]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[5]  J. Ka SOLUTION OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS BY THE METHOD OF CHARACTERISTICS ∗ , 2001 .

[6]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[7]  Zhiqiang Cai,et al.  The finite volume element method for diffusion equations on general triangulations , 1991 .

[8]  Martin Vohralík,et al.  Numerical methods for nonlinear elliptic and parabolic equations. Application to flow problems in porous and fractured media. (Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés) , 2004 .

[9]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .

[10]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[11]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[12]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[13]  M. Lukáčová-Medvid'ová,et al.  On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .

[14]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[15]  Noel J. Walkington,et al.  Optimal rates of convergence for degenerate parabolic problems in two dimensions , 1996 .

[16]  Alain Dervieux,et al.  Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .

[17]  W. Jäger,et al.  Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes , 1995 .

[18]  I. Faille,et al.  A control volume method to solve an elliptic equation on a two-dimensional irregular mesh , 1992 .

[19]  Zhangxin Chen,et al.  Error Analysis for Characteristics-Based Methods for Degenerate Parabolic Problems , 2002, SIAM J. Numer. Anal..

[20]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[21]  Jozef Kacur,et al.  Solution of Degenerate Convection-Diffusion Problems by the Method of Characteristics , 2001, SIAM J. Numer. Anal..

[22]  Arnold Verruijt,et al.  Modeling Groundwater Pollution , 1987 .

[23]  John W. Barrett,et al.  Finite element approximation of transport of reactive solutes in porous media. Part I: Error estimates for non-equilibrium adsorption processes. , 2005 .

[24]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[25]  Clint Dawson,et al.  Analysis of an Upwind-Mixed Finite Element Method for Nonlinear contaminant Transport Equations , 1998 .

[26]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[27]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[28]  M. Vohralík Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .

[29]  M. Vohralík On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .

[30]  Thierry Gallouët,et al.  A finite volume scheme for anisotropic diffusion problems , 2004 .

[31]  Peter A. Forsyth,et al.  A Control Volume Finite Element Approach to NAPL Groundwater Contamination , 1991, SIAM J. Sci. Comput..

[32]  Martin Vohralík,et al.  Combined Nonconforming/Mixed-hybrid Finite Element-Finite Volume Scheme for Degenerate Parabolic Problems , 2004 .

[33]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[34]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[35]  Noel J. Walkington,et al.  Co-volume methods for degenerate parabolic problems , 1993 .

[36]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[37]  John W. Barrett,et al.  Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes , 1997 .

[38]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[39]  Carsten Ebmeyer,et al.  Error Estimates for a Class of Degenerate Parabolic Equations , 1998 .

[40]  Philippe Angot,et al.  Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .

[41]  Felix Otto,et al.  Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: uniqueness of weak solutions , 2000 .

[42]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[43]  Zhangxin Chen,et al.  Degenerate two-phase incompressible flow III. Sharp error estimates , 2001, Numerische Mathematik.

[44]  B. Amaziane,et al.  Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media , 2002 .

[45]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[46]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.