Mesoscopic scales in hierarchical configuration models

Abstract To understand mesoscopic scaling in networks, we study the hierarchical configuration model (HCM), a random graph model with community structure. Connections between communities are formed as in a configuration model. We study the component sizes of HCM at criticality, and we study critical bond percolation. We find the conditions on the community sizes such that the critical component sizes of HCM behave similarly as in the configuration model. We show that the ordered components of a critical HCM on N vertices are O ( N 2 ∕ 3 ) . More specifically, the rescaled component sizes converge to the excursions of a Brownian motion with parabolic drift.

[1]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[2]  Svante Janson,et al.  On percolation in random graphs with given vertex degrees , 2008, 0804.1656.

[3]  Tatyana S. Turova,et al.  Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1. , 2009, Random Struct. Algorithms.

[4]  Kellen Petersen August Real Analysis , 2009 .

[5]  Nicolas Broutin,et al.  Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erdős-Rényi random graph , 2014, 1411.3417.

[6]  Remco van der Hofstad,et al.  Novel scaling limits for critical inhomogeneous random graphs , 2009, 0909.1472.

[7]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Béla Bollobás,et al.  An old approach to the giant component problem , 2012, J. Comb. Theory, Ser. B.

[9]  Remco van der Hofstad,et al.  Hierarchical Configuration Model , 2015, 1512.08397.

[10]  Remco van der Hofstad,et al.  Critical window for the configuration model: finite third moment degrees , 2016, 1605.02868.

[11]  Oliver Riordan,et al.  The Phase Transition in the Configuration Model , 2011, Combinatorics, Probability and Computing.

[12]  P. Groeneboom Brownian motion with a parabolic drift and airy functions , 1989 .

[13]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.

[14]  Johan van Leeuwaarden,et al.  Epidemic spreading on complex networks with community structures , 2016, Scientific Reports.

[15]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .

[16]  Svante Janson,et al.  SUSCEPTIBILITY OF RANDOM GRAPHS WITH GIVEN VERTEX DEGREES , 2009 .

[17]  L. Russo On the critical percolation probabilities , 1981 .

[18]  Nikolaos Fountoulakis,et al.  Percolation on Sparse Random Graphs with Given Degree Sequence , 2007, Internet Math..

[19]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[20]  Remco van der Hofstad,et al.  Critical epidemics, random graphs, and Brownian motion with a parabolic drift , 2010, Advances in Applied Probability.

[21]  Adrien Joseph,et al.  The component sizes of a critical random graph with given degree sequence , 2010, 1012.2352.

[22]  Frank Ball,et al.  Threshold behaviour and final outcome of an epidemic on a random network with household structure , 2008, Advances in Applied Probability.

[23]  Tiago P. Peixoto Nonparametric Bayesian inference of the microcanonical stochastic block model. , 2016, Physical review. E.

[24]  Svante Janson,et al.  Susceptibility in Inhomogeneous Random Graphs , 2009, Electron. J. Comb..

[25]  Johan van Leeuwaarden,et al.  Scaling limits for critical inhomogeneous random graphs with finite third moments , 2009, 0907.4279.

[26]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[27]  Johan van Leeuwaarden,et al.  Power-law relations in random networks with communities , 2015, Physical review. E.