Correlated frequency-dependent polarizabilities and dispersion coefficients in the time-dependent second-order Møller-Plesset approximation

[1]  J. Gauss,et al.  Analytic energy gradients for the equation‐of‐motion coupled‐cluster method: Implementation and application to the HCN/HNC system , 1994 .

[2]  W. Meyer,et al.  Dynamic multipole polarizabilities and long range interaction coefficients for the systems H, Li, Na, K, He, H−, H2, Li2, Na2, and K2 , 1993 .

[3]  Fumihiko Aiga,et al.  Frequency‐dependent hyperpolarizabilities in the Mo/ller–Plesset perturbation theory , 1993 .

[4]  F. Aiga,et al.  Higher‐order response theory based on the quasienergy derivatives: The derivation of the frequency‐dependent polarizabilities and hyperpolarizabilities , 1993 .

[5]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[6]  P. Wormer,et al.  Ab initio dispersion coefficients for interactions involving rare-gas atoms , 1992 .

[7]  Veseth Method to compute atomic and molecular photoionization cross sections by use of basis sets. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[8]  Julia E. Rice,et al.  The calculation of frequency‐dependent polarizabilities as pseudo‐energy derivatives , 1991 .

[9]  J. Olsen,et al.  C6 dispersion coefficients in multiconfiguration self‐consistent field linear response theory , 1990 .

[10]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[11]  P. Taylor,et al.  The polarizabilities of neon , 1989 .

[12]  Jaszuński,et al.  Hyperpolarizability of the neon atom. , 1989, Physical review. A, General physics.

[13]  Trygve Helgaker,et al.  A numerically stable procedure for calculating Møller-Plesset energy derivatives, derived using the theory of Lagrangians , 1989 .

[14]  Trygve Helgaker,et al.  Mo/ller–Plesset energy derivatives , 1988 .

[15]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[16]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[17]  E. Reinsch Calculation of dynamic polarizabilities of He, H2, Ne, HF, H2O, NH3, and CH4 with MC‐SCF wave functions , 1985 .

[18]  P. Wormer,et al.  The nonempirical calculation of second‐order molecular properties by means of effective states. III. Correlated dynamic polarizabilities and dispersion coefficients for He, Ne, H2, N2, and O2 , 1985 .

[19]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[20]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[21]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[22]  Jens Oddershede,et al.  Dynamic polarizabilities and raman intensities of CO, N2, HCl and Cl2 , 1982 .

[23]  A. J. Sadlej Perturbation theory of the electron correlation effects for atomic and molecular properties , 1981 .

[24]  W. Meyer Dynamic multipole polarizabilities of H2 and He and long-range interaction coefficients for H2-H2,H2He and He-He , 1976 .

[25]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[26]  P. Jørgensen,et al.  Calculation of Geometrical Derivatives in Molecular Electronic Structure Theory , 1992 .

[27]  Trygve Helgaker,et al.  Analytical Calculation of Geometrical Derivatives in Molecular Electronic Structure Theory , 1988 .

[28]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .