A unifying perspective: the relaxed linear micromorphic continuum

We formulate a relaxed linear elastic micromorphic continuum model with symmetric Cauchy force stresses and curvature contribution depending only on the micro-dislocation tensor. Our relaxed model is still able to fully describe rotation of the microstructure and to predict nonpolar size effects. It is intended for the homogenized description of highly heterogeneous, but nonpolar materials with microstructure liable to slip and fracture. In contrast to classical linear micromorphic models, our free energy is not uniformly pointwise positive definite in the control of the independent constitutive variables. The new relaxed micromorphic model supports well-posedness results for the dynamic and static case. There, decisive use is made of new coercive inequalities recently proved by Neff, Pauly and Witsch and by Bauer, Neff, Pauly and Starke. The new relaxed micromorphic formulation can be related to dislocation dynamics, gradient plasticity and seismic processes of earthquakes. It unifies and simplifies the understanding of the linear micromorphic models.

[1]  S. Chiriţă,et al.  Rayleigh waves in Cosserat elastic materials , 2012 .

[2]  C. Malyshev The T(3)-Gauge Model, the Einstein-Like Gauge Equation, and Volterra Dislocations with Modified Asymptotics , 2000 .

[3]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[4]  Michele Ciarletta,et al.  Non-Classical Elastic Solids , 1993 .

[5]  P. Neff,et al.  Linear Cosserat Elasticity, Conformal Curvature and Bounded Stiffness , 2010 .

[6]  J. Goddard,et al.  From Granular Matter to Generalized Continuum , 2008 .

[7]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[8]  C. Sansour A unified concept of elastic-viscoplastic Cosserat and micromorphic continua , 1998 .

[9]  I. Ghiba On the temporal behaviour in the bending theory of porous thermoelastic plates , 2013 .

[10]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[11]  Victor A. Eremeyev,et al.  On vectorially parameterized natural strain measures of the non-linear Cosserat continuum , 2009 .

[12]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables , 2003 .

[13]  Uniqueness of Integrable Solutions ∇ζ = Gζ, ζ∣Γ = 0 for Integrable Tensor‐Coefficients G and Applications to Elasticity , 2013 .

[14]  V. A. Steklov,et al.  THE DISLOCATION STRESS FUNCTIONS FROM THE DOUBLE CURL T(3)-GAUGE EQUATION: LINEARITY AND A LOOK BEYOND , 1999 .

[15]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[16]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[17]  Albert Edward Green,et al.  Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  P. Neff,et al.  Maxwell meets Korn: A new coercive inequality for tensor fields in RN×N with square‐integrable exterior derivative , 2011, 1105.5013.

[19]  D. Ieşan On the micromorphic thermoelasticity , 2002 .

[20]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[21]  M. Bîrsan On a Thermodynamic Theory of Porous Cosserat Elastic Shells , 2006 .

[22]  B. D. Reddy,et al.  A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: Algorithms and numerical analysis , 2007 .

[23]  D. Ieşan,et al.  Extremum principles and existence results in micromorphic elasticity , 2001 .

[24]  Luca Placidi,et al.  The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics , 2013, 1308.3762.

[25]  M. Bîrsan Saint-Venant's problem for Cosserat shells with voids , 2005 .

[26]  R. Leis,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[27]  M. Lazar On the Fundamentals of the Three-dimensional Translation Gauge Theory of Dislocations , 2010, 1003.3549.

[28]  An elastoplastic theory of dislocations as a physical field theory with torsion , 2001, cond-mat/0105270.

[29]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (II). Balance laws , 2003 .

[30]  Victor A. Eremeyev,et al.  On natural strain measures of the non-linear micropolar continuum , 2009 .

[31]  Ivan Giorgio,et al.  Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids , 2013 .

[32]  Uniqueness of integrable solutions to $${\nabla \zeta=G \zeta, \zeta|_\Gamma = 0}$$ for integrable tensor coefficients G and applications to elasticity , 2012, 1209.3388.

[33]  R. Toupin Elastic materials with couple-stresses , 1962 .

[34]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[35]  Patrizio Neff,et al.  A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .

[36]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[37]  W. D. Claus,et al.  Dislocation dispersion of elastic waves , 1971 .

[38]  A. Cemal Eringen,et al.  A MICROMORPHIC APPROACH TO DISLOCATION THEORY AND ITS RELATION TO SEVERAL EXISTING THEORIES. , 1969 .

[39]  Patrizio Neff,et al.  Simple shear in nonlinear Cosserat elasticity: bifurcation and induced microstructure , 2009 .

[40]  G. Burton Sobolev Spaces , 2013 .

[41]  Patrizio Neff,et al.  Transversely isotropic material: nonlinear Cosserat versus classical approach , 2011 .

[42]  P. Neff,et al.  Curl bounds Grad on SO(3) , 2006 .

[43]  B. D. Reddy,et al.  A discontinuous Galerkin formulation for classical and gradient plasticity - Part 1: Formulation and analysis , 2007 .

[44]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[45]  P. M. Mariano,et al.  Computational aspects of the mechanics of complex materials , 2005 .

[46]  Victor A. Eremeyev,et al.  Generalized Continua from the Theory to Engineering Applications , 2013 .

[47]  H. Altenbach,et al.  On the theory of porous elastic rods , 2011 .

[48]  Samuel Forest,et al.  Generalized continua and non‐homogeneous boundary conditions in homogenisation methods , 2011 .

[49]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[50]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[51]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[52]  R. Rivlin,et al.  On cauchy's equations of motion , 1964 .

[53]  Gianpietro Del Piero,et al.  ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS , 2009 .

[54]  David J. Steigmann,et al.  Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist , 2012 .

[55]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[56]  Alphose Zingoni Advances and Trends in Structural Engineering, Mechanics and Computation , 2010 .

[57]  Dorin Ieşan,et al.  A theory of thermoelastic materials with voids , 1986 .

[58]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[59]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[60]  M. Bîrsan Thermal stresses in cylindrical Cosserat elastic shells , 2009 .

[61]  M. Bîrsan On Saint–Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells , 2009 .

[62]  Stéphane Hans,et al.  Generalized Beams and Continua. Dynamics of Reticulated Structures , 2010 .

[63]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[64]  Patrizio Neff,et al.  Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[65]  Samuel Forest,et al.  Homogenization methods and mechanics of generalized continua - part 2 , 2002 .

[66]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[67]  On the dynamic deformation of porous Cosserat linear–thermoelastic shells , 2008 .

[68]  Stephen C. Cowin,et al.  Linear elastic materials with voids , 1983 .

[69]  Youping Chen,et al.  Constitutive relations of micromorphic thermoplasticity , 2003 .

[70]  E. Aifantis,et al.  Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results , 2011 .

[71]  R. Teisseyre Symmetric Micromorphic Continuum: Wave Propagation, Point Source Solutions and some Applications to Earthquake Processes , 1974 .

[72]  Roman Teisseyre,et al.  Earthquake processes in a micromorphic continuum , 1973 .

[73]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[74]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[75]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[76]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[77]  E. Giorgi,et al.  Quaderni di Matematica , 2010 .

[78]  Francesco dell’Isola,et al.  The complete works of Gabrio Piola: Volume I Commented English Translation - English and Italian Edition , 2014 .

[79]  V. Popov Coupling of an elastoplastic continuum and a Cosserat continuum , 1994 .

[80]  P. Neff,et al.  A canonical extension of Kornʼs first inequality to H(Curl) motivated by gradient plasticity with plastic spin , 2011, 1106.4731.

[81]  Roderic S. Lakes,et al.  Experimental microelasticity of two porous solids , 1986 .

[82]  I. I. Vrabie C[0]-semigroups and applications , 2003 .

[83]  J. Bleustein A note on the boundary conditions of toupin's strain-gradient theory , 1967 .

[84]  E. Aifantis,et al.  Strain Gradient Crystal Plasticity: Thermomechanical Formulations and Applications , 2002 .

[85]  M. Lazar,et al.  The gauge theory of dislocations: Static solutions of screw and edge dislocations , 2008, 0802.0670.

[86]  Micromorphic Continuum and Fractal Fracturing in the Lithosphere , 2000 .

[87]  Alexander Düster,et al.  Two-scale modelling of micromorphic continua , 2009 .

[88]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[89]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[90]  P. Thoft-Christensen Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics : Proceedings of the NATO Advanced Study Institute held in Reykjavik, Iceland, 11-20 August, 1974 , 1974 .

[91]  P. Neff,et al.  On constitutive and configurational aspects of models for gradient continua with microstructure , 2009 .

[92]  A. C. Smith Inequalities between the constants of a linear micro-elastic solid , 1968 .

[93]  Youping Chen,et al.  Determining material constants in micromorphic theory through phonon dispersion relations , 2003 .

[94]  M. Lazar,et al.  The gauge theory of dislocations: conservation and balance laws , 2008, 0806.0999.

[95]  H. Steeb,et al.  Wave propagation in periodic microstructures by homogenisation of extended continua , 2012 .

[96]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[97]  I. Ghiba On the deformation of transversely isotropic porous elastic circular cylinder , 2009 .

[98]  P. Neff,et al.  Mean field modeling of isotropic random Cauchy elasticity versus microstretch elasticity , 2009 .

[99]  R. D. Mindlin Theories of Elastic Continua and Crystal Lattice Theories , 1968 .

[100]  F. dell’Isola,et al.  Dynamics of solids with microperiodic nonconnected fluid inclusions , 1997 .

[101]  H. Altenbach,et al.  On the Cosserat model for thin rods made of thermoelastic materials with voids , 2013 .

[102]  K. Berglund STRUCTURAL MODELS OF MICROPOLAR MEDIA , 1982 .

[103]  S. Nesenenko Well-posedness for dislocation based gradient visco-plasticity II: monotone case , 2012 .

[104]  Davide Bigoni,et al.  Analytical Derivation of Cosserat Moduli via Homogenization of Heterogeneous Elastic Materials , 2007 .

[105]  P. Neff Remarks on Invariant Modelling in Finite Strain Gradient Plasticity , 2008 .

[106]  G. Modica,et al.  Ground states in complex bodies , 2008, 0802.1435.

[107]  Jean-Louis Guyader,et al.  Switch between fast and slow Biot compression waves induced by ''second gradient microstructure{''} at material discontinuity surfaces in porous media , 2013 .

[108]  F. dell'Isola,et al.  A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter , 1998 .

[109]  P. Neff,et al.  The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy‐stress tensor is symmetric , 2006 .

[110]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[111]  Said Zouhdi,et al.  Metamaterials and Plasmonics: Fundamentals, Modelling, Applications , 2009 .

[112]  Esteban P. Busso,et al.  Size effects in generalised continuum crystal plasticity for two-phase laminates , 2010 .

[113]  R. S. Lakes,et al.  Size effects in the elasticity and viscoelasticity of bone , 2003, Biomechanics and modeling in mechanobiology.

[114]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[115]  V. Berdichevsky Continuum theory of dislocations revisited , 2006 .

[116]  P. M. Mariano Representation of Material Elements and Geometry of Substructural Interactions , 2008, 0802.1432.

[117]  Francesco dell’Isola,et al.  Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory , 2013 .

[118]  P. Neff,et al.  A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy , 2009 .

[119]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[120]  S. Vidoli,et al.  Modal coupling in one-dimensional electromechanical structured continua , 2000 .

[121]  G. Maugin The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool , 2013 .

[122]  Patrizio Neff,et al.  NOTES ON STRAIN GRADIENT PLASTICITY: FINITE STRAIN COVARIANT MODELLING AND GLOBAL EXISTENCE IN THE INFINITESIMAL RATE-INDEPENDENT CASE , 2009 .

[123]  R. Teisseyre,et al.  Chapter 18 – Micromorphic Continuum and Fractal Properties of Faults and Earthquakes , 2001 .

[124]  J. Marsden,et al.  COVARIANT BALANCE LAWS IN CONTINUA WITH MICROSTRUCTURE , 2008, 0811.2234.

[125]  Patrizio Neff,et al.  Existence and Uniqueness for Rate-Independent Infinitesimal Gradient Plasticity with Isotropic Hardening and Plastic Spin , 2010 .

[126]  Patrizio Neff,et al.  Regularity up to the Boundary for Nonlinear Elliptic Systems Arising in Time-Incremental Infinitesimal Elasto-plasticity , 2008, SIAM J. Math. Anal..

[127]  V. Popov,et al.  Theory of elastoplastic media with mesostructure , 2001 .

[128]  P. Neff,et al.  Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields , 2012, 1203.2744.

[129]  Symmetries and Hamiltonian Formalism for Complex Materials , 2003, math-ph/0304046.

[130]  P. Neff,et al.  Infinitesimal elastic–plastic Cosserat micropolar theory. Modelling and global existence in the rate-independent case , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[131]  I. Ghiba Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials , 2008 .

[132]  G. Maugin,et al.  Modelling of complex elastic crystals by means of multi-spin micromorphic media , 2005 .

[133]  M. Lazar Screw dislocations in the field theory of elastoplasticity , 2002, Annalen der Physik.

[134]  Victor A. Eremeyev,et al.  Material symmetry group of the non-linear polar-elastic continuum , 2012 .

[135]  Anja Walter,et al.  C0 Semigroups And Applications , 2016 .

[136]  Axel Klawonn,et al.  FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity , 2011 .

[137]  S. Chiriţă,et al.  Strong ellipticity and progressive waves in elastic materials with voids , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[138]  Stephen C. Cowin,et al.  A nonlinear theory of elastic materials with voids , 1979 .

[139]  V. Popov Gauge theory of plastically incompressible medium without dissipation. I: Dispersion relations and propagation of perturbations without dissipation , 1992 .

[140]  G. Starke,et al.  New Poincaré-type inequalities , 2014 .

[141]  E. Kröner Das physikalische Problem der antisymmetrischen Spannungen und der sogenannten Momentenspannungen , 1966 .

[142]  P. Neff,et al.  Well-Posedness of Dynamic Cosserat Plasticity , 2007 .

[143]  F.dell'isola,et al.  A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle , 2010, 1007.2084.

[144]  Geometry of interactions in complex bodies , 2004, math-ph/0406036.

[145]  Patrizio Neff,et al.  On material constants for micromorphic continua , 2004 .

[146]  G. Starke,et al.  Some Poincaré type inequalities for quadratic matrix fields , 2013 .

[147]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[148]  C. Galeş,et al.  Asymptotic Partition of Energy in Micromorphic Thermopiezoelectricity , 2011 .

[149]  G. Starke,et al.  Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions , 2013, 1307.1434.

[150]  Patrizio Neff,et al.  Well-Posedness for Dislocation Based Gradient Viscoplasticity I: Subdifferential Case , 2012, SIAM J. Math. Anal..

[151]  G. Maugin Electromagnetism and Generalized Continua , 2013 .

[152]  Azim Eskandarian,et al.  Atomistic viewpoint of the applicability of microcontinuum theories , 2004 .

[153]  Patrizio Neff,et al.  Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity , 2009 .

[154]  A. Morro,et al.  Interstitial energy flux and stress-power for second-gradient elasticity , 2016 .

[155]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[156]  I. Ghiba,et al.  On the thermal stresses in anisotropic porous cylinders , 2013 .

[157]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[158]  Christian Wieners,et al.  Numerical approximation of incremental infinitesimal gradient plasticity , 2009 .

[159]  Patrizio Neff,et al.  Existence, Uniqueness and Stability in Linear Cosserat Elasticity for Weakest Curvature Conditions , 2010 .

[160]  S. Chiriţă,et al.  Inhomogeneous plane waves in elastic materials with voids , 2010 .

[161]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[162]  Andrei V. Metrikine,et al.  Mechanics of generalized continua : one hundred years after the Cosserats , 2010 .

[163]  James D. Lee,et al.  Micromorphic theory: a gateway to nano world , 2010 .

[164]  E. Kröner Mechanics of generalized continua : proceedings of the IUTAM-symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967 , 1968 .

[165]  Ching S. Chang,et al.  Effective elastic moduli of heterogeneous granular solids , 1993 .

[166]  Paul Steinmann,et al.  A unifying treatise on variational principles for gradient and micromorphic continua , 2005 .

[167]  C. Galeş Some results in micromorphic piezoelectricity , 2012 .

[168]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[169]  M. Lazar The gauge theory of dislocations: a uniformly moving screw dislocation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.