Gesichtserkennung mit Hidden Markov Modellen

In diesem Beitrag wird ein Gesichtserkennungssystem auf der Basis von DCT-Merkmalen und pseudo zweidimensionalen Hidden Markov Modellen vorgestellt. Das System wurde auf der Gesichtsdatenbasis des Olivetti Research Laboratory (ORL) getestet und erreichte eine Erkennungsrate von 100%. Ein Vergleich mit anderen Systemen zeigt, das dieses die beste bisher publizierte Erkennungsrate ist. Die Vorteile des vorgestellten Systems gegenuber einem alteren, auch auf pseudo zweidimensionalen HMM basierenden Verfahren, werden analysiert.

[1]  Monson H. Hayes,et al.  Hidden Markov models for face recognition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[2]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[4]  Horst Bunke,et al.  Combination of face classifiers for person identification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[5]  Hong Yan,et al.  Face recognition by fractal transformations , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[6]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.

[7]  Oscar E. Agazzi,et al.  Pseudo two-dimensional hidden Markov models for document recognition , 1993, AT&T Technical Journal.

[8]  Roberto Pieraccini,et al.  Dynamic planar warping for optical character recognition , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Hong Yan,et al.  An Analytic-to-Holistic Approach for Face Recognition Based on a Single Frontal View , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Simon M. Lucas,et al.  Face recognition with the continuous n-tuple classifier , 1998, BMVC.

[11]  Uday B. Desai,et al.  Face recognition using a DCT-HMM approach , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[12]  Ferdinando Silvestro Samaria,et al.  Face recognition using Hidden Markov Models , 1995 .

[13]  Jun Zhang,et al.  Pace recognition: eigenface, elastic matching, and neural nets , 1997, Proc. IEEE.

[14]  Gerhard Rigoll,et al.  Recognition of JPEG compressed face images based on statistical methods , 2000, Image Vis. Comput..

[15]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[17]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[18]  Oskar Dressler,et al.  Künstliche Intelligenz? , 1986, FIFF Jahrestagung.

[19]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[20]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[21]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..