Temporal Responses of C. elegans Chemosensory Neurons Are Preserved in Behavioral Dynamics

[1]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[2]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H M Sakai,et al.  White-noise analysis in visual neuroscience , 1988, Visual Neuroscience.

[4]  Research in the community. , 1989, Nursing times.

[5]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[6]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[7]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[8]  J F Ashmore,et al.  Transduction and adaptation in sensory receptor cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[10]  Cori Bargmann,et al.  The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons , 1998, Neuron.

[11]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[12]  T. Baker,et al.  Odour-plume dynamics influence the brain's olfactory code , 2001, Nature.

[13]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[14]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[15]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[16]  Yi Zheng,et al.  Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans , 2002, Neuron.

[17]  David T. Westwick,et al.  Identification of nonlinear physiological systems , 2003 .

[18]  A. Hart,et al.  Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G. D. Mccann,et al.  A family of quasi-white random signals and its optimal use in biological system identification , 1977, Biological Cybernetics.

[20]  Asaf Keller,et al.  Robust Temporal Coding in the Trigeminal System , 2004, Science.

[21]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[22]  M. Stopfer,et al.  Encoding a temporally structured stimulus with a temporally structured neural representation , 2005, Nature Neuroscience.

[23]  Damon A. Clark,et al.  The bacterial chemotactic response reflects a compromise between transient and steady-state behavior. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Yau,et al.  Elementary Response of Olfactory Receptor Neurons to Odorants , 2005, Science.

[25]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[26]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[27]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[28]  Jeffrey A. Riffell,et al.  Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment , 2008, Journal of Chemical Ecology.

[29]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[30]  Katherine I. Nagel,et al.  Organizing Principles of Spectro-Temporal Encoding in the Avian Primary Auditory Area Field L , 2008, Neuron.

[31]  Shamik Dasgupta,et al.  Learned Odor Discrimination in Drosophila without Combinatorial Odor Maps in the Antennal Lobe , 2008, Current Biology.

[32]  Sreekanth H. Chalasani,et al.  A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans , 2008, Neuron.

[33]  Daniel Ramot,et al.  Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans , 2008, Nature Neuroscience.

[34]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[35]  Gilles Laurent,et al.  Neural Encoding of Rapidly Fluctuating Odors , 2009, Neuron.

[36]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[37]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[38]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[39]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[40]  Dai Fukumura,et al.  In vivo imaging of tumors. , 2010, Cold Spring Harbor protocols.

[41]  S. Lockery,et al.  Evolution and Analysis of Minimal Neural Circuits for Klinotaxis in Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[42]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[43]  Katherine I. Nagel,et al.  Biophysical mechanisms underlying olfactory receptor neuron dynamics , 2010, Nature Neuroscience.

[44]  M. Koehl,et al.  The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume , 2011, Journal of Experimental Biology.

[45]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[46]  M. Goodman,et al.  DEG/ENaC but Not TRP Channels Are the Major Mechanoelectrical Transduction Channels in a C. elegans Nociceptor , 2011, Neuron.

[47]  Cori Bargmann,et al.  High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments , 2011, Nature Methods.

[48]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[49]  Mario de Bono,et al.  Tonic signaling from O2 sensors sets neural circuit activity and behavioral state , 2012, Nature Neuroscience.

[50]  B. Hansson,et al.  Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity , 2012, Front. Cell. Neurosci..

[51]  M. Hendricks,et al.  Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement , 2012, Nature.

[52]  Adam D. Schneider,et al.  The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion , 2012, PLoS biology.

[53]  E. Ahissar,et al.  Motor-Sensory Confluence in Tactile Perception , 2012, The Journal of Neuroscience.

[54]  Diego A. Pacheco,et al.  Fast GCaMPs for improved tracking of neuronal activity , 2013, Nature Communications.

[55]  W. Schafer,et al.  tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans , 2013, Nature.

[56]  John R. Carlson,et al.  Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response , 2013, The Journal of Neuroscience.