EP300 single nucleotide polymorphism rs20551 correlates with prolonged overall survival in diffuse large B cell lymphoma patients treated with R-CHOP

[1]  B. D. de Vries,et al.  Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by EP300 mutations , 2016, American journal of medical genetics. Part A.

[2]  Ryan D. Morin,et al.  Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. , 2016, Blood.

[3]  W. Au,et al.  A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma , 2014, British journal of haematology.

[4]  F. Fernández‐Avilés,et al.  A constitutional variant in the transcription factor EP300 strongly influences the clinical outcome of patients submitted to allo-SCT , 2012, Bone Marrow Transplantation.

[5]  J. Friedberg Relapsed/refractory diffuse large B-cell lymphoma. , 2011, Hematology. American Society of Hematology. Education Program.

[6]  W. Gu,et al.  The impact of acetylation and deacetylation on the p53 pathway , 2011, Protein & Cell.

[7]  B. Pollock,et al.  Multilocus Association of Genetic Variants in MLL, CREBBP, EP300, and TOP2A with Childhood Acute Lymphoblastic Leukemia in Hispanics from Texas , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[8]  A. Nademanee,et al.  Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin's lymphoma and mantle cell lymphoma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  Raul Rabadan,et al.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma , 2010, Nature.

[10]  B. Coiffier,et al.  Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. , 2010, Blood.

[11]  Yi Tang,et al.  Acetylation Is Indispensable for p53 Activation , 2008, Cell.

[12]  Ling Wang,et al.  The structural basis of protein acetylation by the p300/CBP transcriptional coactivator , 2008, Nature.

[13]  Markus Loeffler,et al.  Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). , 2008, The Lancet. Oncology.

[14]  Randy D Gascoyne,et al.  Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  K. Basso,et al.  BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells , 2005, Nature Immunology.

[16]  R. Gascoyne,et al.  Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Ryan T. Phan,et al.  The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells , 2004, Nature.

[18]  L. Pan,et al.  Disease-related potential of mutations in transcriptional cofactors CREB-binding protein and p300 in leukemias. , 2004, Cancer letters.

[19]  B. Lüscher,et al.  Stimulation of c‐MYC transcriptional activity and acetylation by recruitment of the cofactor CBP , 2003, EMBO reports.

[20]  R. Goodman,et al.  CBP/p300 in cell growth, transformation, and development. , 2000, Genes & development.

[21]  Carlos Caldas,et al.  Mutations truncating the EP300 acetylase in human cancers , 2000, Nature Genetics.

[22]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[23]  G. Rossi,et al.  The International Prognostic Index can be used as a guide to treatment decisions regarding patients with human immunodeficiency virus—related systemic non‐Hodgkin lymphoma , 1999, Cancer.

[24]  M. Breuning,et al.  Conjunction dysfunction: CBP/p300 in human disease. , 1998, Trends in genetics : TIG.

[25]  N. Reich,et al.  Interferon Regulatory Factor 3 and CREB-Binding Protein/p300 Are Subunits of Double-Stranded RNA-Activated Transcription Factor DRAF1 , 1998, Molecular and Cellular Biology.

[26]  Y. Hayashi,et al.  Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). , 1997, Blood.

[27]  Wei Gu,et al.  Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain , 1997, Cell.

[28]  Andrew J. Bannister,et al.  The CBP co-activator is a histone acetyltransferase , 1996, Nature.

[29]  B. Howard,et al.  The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases , 1996, Cell.

[30]  C. Disteche,et al.  The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein , 1996, Nature Genetics.

[31]  T. Iwama,et al.  p300 gene alterations in colorectal and gastric carcinomas. , 1996, Oncogene.

[32]  D. Livingston,et al.  A family of transcriptional adaptor proteins targeted by the E1A oncoprotein , 1995, Nature.

[33]  R. Goodman,et al.  Adenoviral ElA-associated protein p300 as a functional homologue of the transcriptional co-activator CBP , 1995, Nature.