Deblurring of Color Images Corrupted by Impulsive Noise

We consider the problem of restoring a multichannel image corrupted by blur and impulsive noise (e.g., salt-and-pepper noise). Using the variational framework, we consider the L1 fidelity term and several possible regularizers. In particular, we use generalizations of the Mumford-Shah (MS) functional to color images and Gamma-convergence approximations to unify deblurring and denoising. Experimental comparisons show that the MS stabilizer yields better results with respect to Beltrami and total variation regularizers. Color edge detection is a beneficial by-product of our methods

[1]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[2]  Ali Mohammad-Djafari,et al.  Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF , 1998, IEEE Trans. Image Process..

[3]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[4]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[6]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[7]  Patrick L. Combettes,et al.  An adaptive level set method for nondifferentiable constrained image recovery , 2002, IEEE Trans. Image Process..

[8]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[11]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[12]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[13]  M. Nikolova A Variational Approach to Remove Outliers and Impulse Noise , 2004 .

[14]  Rafael Molina,et al.  3.7 – Multichannel Image Recovery , 2005 .

[15]  Jaakko Astola,et al.  Impulse noise removal in highly corrupted color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[16]  Panos E. Trahanias,et al.  Directional processing of color images: theory and experimental results , 1996, IEEE Trans. Image Process..

[17]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[18]  Nahum Kiryati,et al.  Image Deblurring in the Presence of Impulsive Noise , 2006, International Journal of Computer Vision.

[19]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[20]  K. Martin,et al.  Vector filtering for color imaging , 2005, IEEE Signal Processing Magazine.

[21]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[22]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[23]  Aggelos K. Katsaggelos,et al.  Bayesian multichannel image restoration using compound Gauss-Markov random fields , 2003, IEEE Trans. Image Process..

[24]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[25]  Nahum Kiryati,et al.  Variational Pairing of Image Segmentation and Blind Restoration , 2004, ECCV.

[26]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Thomas Brox,et al.  PDE-Based Deconvolution with Forward-Backward Diffusivities and Diffusion Tensors , 2005, Scale-Space.

[30]  Jayant Shah,et al.  Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations , 1999 .

[31]  C. Boncelet Image Noise Models , 2009 .

[32]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[33]  T. R. Gosnell,et al.  Digital Image Reconstruction: Deblurring and Denoising , 2005 .

[34]  Ron Kimmel,et al.  Variational Restoration and Edge Detection for Color Images , 2003, Journal of Mathematical Imaging and Vision.

[35]  N. Sochen,et al.  Color image denoising and blind deconvolution using the Beltrami operator , 2003, 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the.

[36]  Nahum Kiryati,et al.  Image Deblurring in the Presence of Salt-and-Pepper Noise , 2005, Scale-Space.

[37]  D. Tschumperlé PDE's based regularization of multivalued images and applications , 2002 .

[38]  Richard A. Haddad,et al.  Adaptive median filters: new algorithms and results , 1995, IEEE Trans. Image Process..

[39]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[40]  R. Mersereau,et al.  Iterative methods for image deblurring , 1990 .

[41]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Michel Barlaud,et al.  Variational approach for edge-preserving regularization using coupled PDEs , 1998, IEEE Trans. Image Process..

[43]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Panos E. Trahanias,et al.  Vector directional filters-a new class of multichannel image processing filters , 1993, IEEE Trans. Image Process..

[45]  G. Eichmann,et al.  Vector median filters , 1987 .

[46]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[47]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[48]  Danny Barash One-Step Deblurring and Denoising Color Images Using Partial Differential Equations , 2001 .

[49]  Michel Chipot,et al.  Analysis of a Nonconvex Problem Related to Signal Selective Smoothing , 1997 .

[50]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.