Post-functionalization of a photoactive hybrid polyoxotungstate.

A new post-functionalization strategy for hybrid polyoxometalate (POM) clusters is presented, whereby the electronic properties and visible-light driven oxidative reactivity of the POM core can be altered by controlled addition of transition metal ions. The structure of three new metal-functionalised derivatives of a phosphonate hybrid-POM are discussed, alongside a comparison of their electrochemical, photo-chemical and photo-oxidative properties.

[1]  Graham N. Newton,et al.  Shining a light on the photo-sensitisation of organic-inorganic hybrid polyoxometalates. , 2018, Dalton transactions.

[2]  C. Boskovic Rare Earth Polyoxometalates. , 2017, Accounts of chemical research.

[3]  L. Cronin,et al.  Design and synthesis of polyoxometalate-framework materials from cluster precursors , 2017 .

[4]  Graham N. Newton,et al.  A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides. , 2017, Inorganic chemistry.

[5]  Graham N. Newton,et al.  Redox-active organic-inorganic hybrid polyoxometalate micelles , 2017 .

[6]  M. Lechner,et al.  Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design. , 2016, Dalton transactions.

[7]  Lixin Wu,et al.  Co-assembly of polyoxometalates and peptides towards biological applications. , 2016, Soft matter.

[8]  Annette Rompel,et al.  The Anderson–Evans polyoxometalate: From inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM” , 2016 .

[9]  J. T. Margraf,et al.  Template-dependent photochemical reactivity of molecular metal oxides. , 2015, Chemistry.

[10]  Sa-Sa Wang,et al.  Recent advances in polyoxometalate-catalyzed reactions. , 2015, Chemical reviews.

[11]  Asen Asenov,et al.  Design and fabrication of memory devices based on nanoscale polyoxometalate clusters , 2014, Nature.

[12]  P. Proost,et al.  Molecular origin of the hydrolytic activity and fixed regioselectivity of a Zr(IV) -substituted polyoxotungstate as artificial protease. , 2014, Chemistry.

[13]  W. You,et al.  Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. , 2014, Journal of the American Chemical Society.

[14]  J. Fielden,et al.  Polyoxometalate Multi‐Electron‐Transfer Catalytic Systems for Water Splitting , 2014 .

[15]  C. Streb,et al.  Chirality meets visible-light photocatalysis in a molecular cerium vanadium oxide cluster. , 2014, Chemical communications.

[16]  A. Dolbecq,et al.  Photochromic properties of polyoxotungstates with grafted spiropyran molecules. , 2013, Inorganic chemistry.

[17]  L. Cronin,et al.  Exploring the programmable assembly of a polyoxometalate-organic hybrid via metal ion coordination. , 2013, Journal of the American Chemical Society.

[18]  B. Matt,et al.  Charge Photo-Accumulation and Photocatalytic Hydrogen Evolution Under Visible Light at an Iridium(III)-Photosensitized Polyoxotungstate. , 2013, Energy & environmental science.

[19]  Lise‐Marie Chamoreau,et al.  Bisorganophosphonyl and -Organoarsenyl Derivatives of Heteropolytungstates as Hard Ligands for Early-Transition-Metal and Lanthanide Cations† , 2013 .

[20]  S. Campagna,et al.  Tetrametallic molecular catalysts for photochemical water oxidation. , 2013, Chemical Society reviews.

[21]  Yu-Fei Song,et al.  Recent advances on polyoxometalate-based molecular and composite materials. , 2012, Chemical Society reviews.

[22]  A. Dolbecq,et al.  Diversity in structures and properties of 3d-incorporating polyoxotungstates. , 2012, Chemical Society reviews.

[23]  L. Cronin,et al.  Engineering polyoxometalates with emergent properties. , 2012, Chemical Society reviews.

[24]  Shoutian Zheng,et al.  Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). , 2012, Chemical Society reviews.

[25]  B. Matt,et al.  Functionalization and post-functionalization: a step towards polyoxometalate-based materials. , 2012, Chemical Society reviews.

[26]  C. Streb New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. , 2012, Dalton transactions.

[27]  C. Reber,et al.  Sensitization of lanthanoid luminescence by organic and inorganic ligands in lanthanoid-organic-polyoxometalates. , 2012, Inorganic chemistry.

[28]  U. Kortz,et al.  Divacant polyoxotungstates: reactivity of the gamma-decatungstates [γ-XW10O36]8-(X = Si, Ge). , 2011, Dalton transactions.

[29]  R. Thouvenot,et al.  Insights into the coordination chemistry of phosphonate derivatives of heteropolyoxotungstates. , 2011, Inorganic chemistry.

[30]  C. R. Mayer,et al.  Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. , 2010, Chemical reviews.

[31]  Qiushi Yin,et al.  A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals , 2010, Science.

[32]  J. Simons,et al.  Nature of PO bonds in phosphates. , 2009, The journal of physical chemistry. A.

[33]  T. Yamase Photoredox Chemistry of Polyoxometalates as a Photocatalyst , 2003 .

[34]  E. Papaconstantinou Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadium , 1989 .

[35]  T. Shepherd,et al.  Quenching of excited singlet states by metal ions , 1977 .

[36]  H. Linschitz,et al.  The Quenching of Triplet States of Anthracene and Porphyrins by Heavy Metal Ions1 , 1960 .

[37]  Graham N. Newton,et al.  Orbital Engineering: Photoactivation of an Organofunctionalized Polyoxotungstate. , 2017, Chemistry.

[38]  Tia E. Keyes,et al.  Hybrid polyoxometalate materials for photo(electro-) chemical applications , 2016 .

[39]  Achim Müller,et al.  Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines , 1991 .