Multi-objective parameter optimization of common land model using adaptive surrogate modeling

Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20 to 100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) Regional LSMs are expensive to run, while conventional multi-objective optimization methods need a large number of model runs (typically ~10 5 –10 6 ). It makes parameter optimization computationally prohibitive. An uncertainty quantification framework was developed to meet the aforementioned challenges, which include the following steps: (1) using parameter screening to reduce the number of adjustable parameters, (2) using surrogate models to emulate the responses of dynamic models to the variation of adjustable parameters, (3) using an adaptive strategy to improve the efficiency of surrogate modeling-based optimization; (4) using a weighting function to transfer multi-objective optimization to single-objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column application of a LSM – the Common Land Model (CoLM), and evaluate the effectiveness and efficiency of the proposed framework. The result indicate that this framework can efficiently achieve optimal parameters in a more effective way. Moreover, this result implies the possibility of calibrating other large complex dynamic models, such as regional-scale LSMs, atmospheric models and climate models.

[1]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[2]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[3]  Jerome H. Friedman,et al.  Rejoinder: Multivariate Adaptive Regression Splines , 1991 .

[4]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[5]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[6]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[7]  Andreas Efstratiadis,et al.  Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data , 2013 .

[8]  Jun Xia,et al.  Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model , 2012 .

[9]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[10]  Soroosh Sorooshian,et al.  Impacts of a Parameterization Deficiency on Offline and Coupled Land Surface Model Simulations , 2003 .

[11]  J. Antenucci,et al.  A multiobjective response surface approach for improved water quality planning in lakes and reservoirs , 2010 .

[12]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[13]  Soroosh Sorooshian,et al.  Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model , 2004 .

[14]  Gwendolyn J. Mason EXPLORING THE RELATIONSHIP BETWEEN , 2014 .

[15]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[16]  Hoshin V. Gupta,et al.  Exploring the relationship between complexity and performance in a land surface model using the multicriteria method , 2002 .

[17]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[18]  Kok Wai Wong,et al.  Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems , 2005 .

[19]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[20]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[21]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[22]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[23]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[24]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[25]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[26]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[27]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[28]  Michèle Sebag,et al.  Comparison-Based Optimizers Need Comparison-Based Surrogates , 2010, PPSN.

[29]  Wei Gong,et al.  An evaluation of adaptive surrogate modeling based optimization with two benchmark problems , 2014, Environ. Model. Softw..

[30]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[31]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[32]  Stefano Tarantola,et al.  Evaluation of MARS modeling technique for sensitivity analysis of model output , 2010 .

[33]  Wei Gong,et al.  Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis , 2013 .

[34]  Luis A. Bastidas,et al.  Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset , 2002 .

[35]  Mrinal K. Sen,et al.  Optimal parameter and uncertainty estimation of a land surface model: A case study using data from Cabauw, Netherlands , 2003 .

[36]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[37]  K. McGuffie,et al.  The Project for Intercomparison of Land-surface Parametrization Schemes (PILPS): 1992 to 1995 , 1996 .

[38]  Soroosh Sorooshian,et al.  Constraining Land Surface and Atmospheric Parameters of a Locally Coupled Model Using Observational Data , 2005 .

[39]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[40]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[41]  Dirk Gorissen,et al.  Grid-enabled adaptive surrogate modeling for computer aided engineering , 2010 .

[42]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[43]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[44]  R. Dickinson,et al.  The Common Land Model , 2003 .

[45]  A. Zhu,et al.  A China data set of soil properties for land surface modeling , 2013 .

[46]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[47]  Thomas Meixner,et al.  A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models , 2007 .

[48]  Ann Henderson-Sellers,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1995 .

[49]  Wei Chu,et al.  A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model , 2014, Environ. Model. Softw..

[50]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[51]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[52]  Trevor Hastie,et al.  The elements of statistical learning. 2001 , 2001 .

[53]  Roman Neruda,et al.  Surrogate model selection for evolutionary multiobjective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[54]  Jun Xia,et al.  An efficient integrated approach for global sensitivity analysis of hydrological model parameters , 2013, Environ. Model. Softw..

[55]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[56]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[57]  曾庆存,et al.  A Land Surface Model (IAP94) for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM , 1998 .

[58]  Zeng Qingcun,et al.  A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments , 1997 .

[59]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:: 1. Experiment description and summary intercomparisons , 1998 .

[60]  D. Boyle Multicriteria Calibration of Hydrologic Models , 2013 .

[61]  Slawomir Koziel,et al.  Surrogate-Based Modeling and Optimization , 2013 .

[62]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[63]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[64]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[65]  Xue Feng,et al.  A land surface model (IAP94) for climate studies Part II: Implementation and preliminary results of coupled model with IAP GCM , 1998 .

[66]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .