How long does it take to compute the eigenvalues of a random, symmetric matrix?
暂无分享,去创建一个
[1] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[2] J. Neumann,et al. Numerical inverting of matrices of high order. II , 1951 .
[3] J. H. Wilkinson. Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .
[4] W. Symes. Hamiltonian group actions and integrable systems , 1980 .
[5] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[6] Stephen Smale,et al. On the average number of steps of the simplex method of linear programming , 1983, Math. Program..
[7] Carlos Tomei,et al. The Toda flow on a generic orbit is integrable , 1984 .
[8] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[9] T. Nanda. Differential Equations and the QR Algorithm , 1985 .
[10] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[11] A. Malyshev. Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .
[12] P. Deift,et al. Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .
[13] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[14] David S. Watkins. Isospectral Flows , 1996 .
[15] Dynamical systems and probabilistic methods in partial differential equations , 1996 .
[16] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[17] J. Demmel,et al. An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .
[18] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[19] A. Edelman,et al. Matrix models for beta ensembles , 2002, math-ph/0206043.
[20] Eduard Zehnder,et al. Notes on Dynamical Systems , 2005 .
[21] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[22] D. Spielman,et al. Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.
[23] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[24] A. Edelman,et al. From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.
[25] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[26] N. Higham. Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .
[27] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[28] Mark E. J. Newman,et al. Power-Law Distributions in Empirical Data , 2007, SIAM Rev..
[29] Nicolau C. Saldanha,et al. The Asymptotics of Wilkinson’s Shift: Loss of Cubic Convergence , 2008, Found. Comput. Math..
[30] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[31] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[32] H. Yau,et al. Universality of local spectral statistics of random matrices , 2011, 1106.4986.
[33] J. Demmel. The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .
[34] Persi Diaconis,et al. Random doubly stochastic tridiagonal matrices , 2013, Random Struct. Algorithms.
[35] Diego Armentano,et al. Complexity of Path-Following Methods for the Eigenvalue Problem , 2011, Found. Comput. Math..
[36] Teodoro Collin. RANDOM MATRIX THEORY , 2016 .
[37] Wood , 2018, Houston Rap Tapes.