How long does it take to compute the eigenvalues of a random, symmetric matrix?

We present the results of an empirical study of the performance of the QR algorithm (with and without shifts) and the Toda algorithm on random symmetric matrices. The random matrices are chosen from six ensembles, four of which lie in the Wigner class. For all three algorithms, we observe a form of universality for the deflation time statistics for random matrices within the Wigner class. For these ensembles, the empirical distribution of a normalized deflation time is found to collapse onto a curve that depends only on the algorithm, but not on the matrix size or deflation tolerance provided the matrix size is large enough (see Figure 4, Figure 7 and Figure 10). For the QR algorithm with the Wilkinson shift, the observed universality is even stronger and includes certain non-Wigner ensembles. Our experiments also provide a quantitative statistical picture of the accelerated convergence with shifts.

[1]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[2]  J. Neumann,et al.  Numerical inverting of matrices of high order. II , 1951 .

[3]  J. H. Wilkinson Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .

[4]  W. Symes Hamiltonian group actions and integrable systems , 1980 .

[5]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[6]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[7]  Carlos Tomei,et al.  The Toda flow on a generic orbit is integrable , 1984 .

[8]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[9]  T. Nanda Differential Equations and the QR Algorithm , 1985 .

[10]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[11]  A. Malyshev Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .

[12]  P. Deift,et al.  Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .

[13]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[14]  David S. Watkins Isospectral Flows , 1996 .

[15]  Dynamical systems and probabilistic methods in partial differential equations , 1996 .

[16]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[17]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .

[18]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[19]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[20]  Eduard Zehnder,et al.  Notes on Dynamical Systems , 2005 .

[21]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[22]  D. Spielman,et al.  Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.

[23]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[24]  A. Edelman,et al.  From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.

[25]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[26]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[27]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[28]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[29]  Nicolau C. Saldanha,et al.  The Asymptotics of Wilkinson’s Shift: Loss of Cubic Convergence , 2008, Found. Comput. Math..

[30]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[31]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[32]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.

[33]  J. Demmel The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .

[34]  Persi Diaconis,et al.  Random doubly stochastic tridiagonal matrices , 2013, Random Struct. Algorithms.

[35]  Diego Armentano,et al.  Complexity of Path-Following Methods for the Eigenvalue Problem , 2011, Found. Comput. Math..

[36]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[37]  Wood , 2018, Houston Rap Tapes.