Boninites as Mercury lava analogues: Geochemical and spectral measurements from pillow lavas on Cyprus island

[1]  M. Sgavetti,et al.  Effects of Temperature on Visible and Infrared Spectra of Mercury Minerals Analogues , 2023, Minerals.

[2]  K. Glassmeier,et al.  BepiColombo - Mission Overview and Science Goals , 2021, Space Science Reviews.

[3]  J. Helbert,et al.  Correction to: Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update , 2020, Space Science Reviews.

[4]  A. Maturilli,et al.  Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update , 2020, Space Science Reviews.

[5]  Tomoki Nakamura,et al.  Characterizing irradiated surfaces using IR spectroscopy , 2020 .

[6]  S. Debei,et al.  SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission , 2020, Space Science Reviews.

[7]  L. Nittler,et al.  Global major-element maps of Mercury from four years of MESSENGER X-Ray Spectrometer observations , 2020, 2003.00650.

[8]  M. Reagan,et al.  Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics , 2019, Geosphere.

[9]  C. Pauselli,et al.  Experimental constraints on the rheology, eruption, and emplacement dynamics of analog lavas comparable to Mercury's northern volcanic plains , 2017, 1708.04810.

[10]  M. Barucci,et al.  Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids , 2017 .

[11]  L. Nittler,et al.  Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle , 2017 .

[12]  C. McCammon,et al.  Melting processes and mantle sources of lavas on Mercury , 2016 .

[13]  F. McCubbin,et al.  The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas , 2016 .

[14]  L. Nittler,et al.  Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer , 2015 .

[15]  Sabrina Ferrari,et al.  Komatiites as Mercury surface analogues: Spectral measurements at PEL , 2014 .

[16]  E. Dartois,et al.  Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies , 2014 .

[17]  Alessandro Maturilli,et al.  Visible and near-infrared reflectance spectra of thermally processed synthetic sulfides as a potential analog for the hollow forming materials on Mercury , 2013 .

[18]  M. Massironi,et al.  VNIR and TIR Spectra of Terrestrial Komatiites Possibly Analogues of some Hermean Terrain Compositions , 2013 .

[19]  M. Zuber,et al.  Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy , 2013 .

[20]  L. Nittler,et al.  The redox state, FeO content, and origin of sulfur‐rich magmas on Mercury , 2013 .

[21]  R. Shinjo,et al.  Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction? , 2012 .

[22]  Richard D. Starr,et al.  Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2012 .

[23]  L. Nittler,et al.  Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling , 2012 .

[24]  Sean C. Solomon,et al.  Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer , 2012 .

[25]  F. McCubbin,et al.  Is Mercury a volatile‐rich planet? , 2012 .

[26]  L. Danyushevsky,et al.  Petrolog3: Integrated software for modeling crystallization processes , 2011 .

[27]  Nikole K. Lewis,et al.  Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy , 2010 .

[28]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[29]  Db Dingwell,et al.  Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions , 2002, Bulletin of Volcanology.

[30]  Clark R. Chapman,et al.  The MESSENGER mission to Mercury: Scientific objectives and implementation , 2001 .

[31]  M. J. Bas IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks , 2000 .

[32]  Harold F. Levison,et al.  Dynamical Lifetimes and Final Fates of Small Bodies: Orbit Integrations vs Öpik Calculations , 1999 .

[33]  J. Burns,et al.  The Exchange of Impact Ejecta Between Terrestrial Planets , 1996, Science.

[34]  R. Jeanloz,et al.  Evidence for a basalt-free surface on Mercury and implications for internal heat. , 1995, Science.

[35]  K. Keil,et al.  Recognizing mercurian meteorites , 1995 .

[36]  R. Nielsen,et al.  COMAGMAT: a Fortran program to model MAGMA differentiation processes , 1993 .

[37]  H. Melosh,et al.  Swapping Rocks: Ejection and Exchange of Surface Material Among the Terrestrial Planets , 1993 .

[38]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[39]  W. E. Cameron Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus , 1985 .

[40]  A. Hofmann,et al.  Case studies on the origin of basalt , 1983 .

[41]  F. Frey,et al.  Geochemical characteristics of boninite series volcanics: implications for their source , 1982 .

[42]  S. Humphris The hydrothermal alteration of oceanic basalts by seawater , 1976 .

[43]  I. G. Gass,et al.  Intrusion, Extrusion and Metamorphism at Constructive Margins: Evidence from the Troodos Massif, Cyprus , 1973, Nature.

[44]  Eldridge M. Moores,et al.  The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications , 1971, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[45]  C. Allan Birch,et al.  Mercury , 1964, Pediatric Environmental Health.

[46]  J. P. Iddings,et al.  A Quantitative Chemico-Mineralogical Classification and Nomenclature of Igneous Rocks , 1902, The Journal of Geology.

[47]  Mesut Gündüz,et al.  PetroGram: An excel-based petrology program for modeling of magmatic processes , 2021 .

[48]  R. Arculus,et al.  Boninites , 2021, Encyclopedia of Geology.

[49]  O. Namur,et al.  Silicate mineralogy at the surface of Mercury , 2017 .

[50]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[51]  I. G. Gass,et al.  The geology and gravity anomalies of the troodos massif, cyprus , 1963, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.