A new parametric model for the assessment and calibration of medium‐range ensemble temperature forecasts

We present a new method for the assessment and calibration of medium-range ensemble temperature forecasts. The method is based on maximizing the likelihood of a simple parametric model for the temperature distribution, and leads to some new insights into the predictability of uncertainty. Copyright © 2004 Royal Meteorological Society

[1]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[2]  Nicholas E. Graham,et al.  Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels , 1999 .

[4]  F. Atger,et al.  The Skill of Ensemble Prediction Systems , 1999 .

[5]  C. Ziehmann Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models , 2000 .

[6]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[7]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[8]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[9]  William H. Press,et al.  Numerical recipes , 1990 .

[10]  Yuejian Zhu,et al.  The Use of Ensembles to Identify Forecasts with Small and Large Uncertainty , 2001 .

[11]  Moment based methods for ensemble assessment and calibration , 2003, physics/0309042.

[12]  A. Brix,et al.  Long memory in surface air temperature: detection, modeling, and application to weather derivative valuation , 2002 .

[13]  Carlos A. Coelho,et al.  Forecast calibration and combination: A simple Bayesian approach for ENSO , 2004 .

[14]  Do probabilistic medium-range temperature forecasts need to allow for non-normality? , 2003, physics/0310060.

[15]  Jeffrey L. Anderson A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations , 1996 .

[16]  William R. Burrows,et al.  A Strategy for Verification of Weather Element Forecasts from an Ensemble Prediction System , 1999 .

[17]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[18]  C. Leith Theoretical Skill of Monte Carlo Forecasts , 1974 .

[19]  Tim N. Palmer,et al.  On the Prediction of Forecast Skill , 1988 .

[20]  David B. Stephenson,et al.  Statistical methods for interpreting Monte Carlo ensemble forecasts , 2000 .

[21]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[22]  Leonard A. Smith,et al.  Combining dynamical and statistical ensembles , 2003 .

[23]  Leonard A. Smith,et al.  Evaluating Probabilistic Forecasts Using Information Theory , 2002 .

[24]  G. Anderson Mesoscale Influences on Wind Fields , 1971 .

[25]  Thomas M. Hamill,et al.  Reliability Diagrams for Multicategory Probabilistic Forecasts , 1997 .

[26]  D. Richardson Skill and relative economic value of the ECMWF ensemble prediction system , 2000 .

[27]  A. H. Murphy,et al.  A General Framework for Forecast Verification , 1987 .

[28]  Stephen Jewson,et al.  The use of weather forecasts in the pricing of weather derivatives , 2002 .

[29]  K. Mylne,et al.  Can an ensemble give anything more than Gaussian probabilities , 2002 .

[30]  Roberto Buizza,et al.  Quantitative Precipitation Forecasts over the United States by the ECMWF Ensemble Prediction System , 2001 .