On some applications of generalized functionality for arithmetic discrete planes

Naive discrete planes are well known to be functional on a coordinate plane. The aim of our paper is to extend the functionality concept to a larger family of arithmetic discrete planes, by introducing suitable projection directions (@a"1,@a"2,@a"3) satisfying @a"1v"[email protected]"2v"[email protected]"3v"3=w. Several applications are considered. We first study certain local configurations, that is, the (m,n)-cubes introduced in Ref. [J. Vittone, J.-M. Chassery, (n,m)-cubes and Farey Nets for Naive Planes Understanding, in: DGCI, 8th International Conference, Lecture Notes in Computer Science, vol. 1568, Springer-Verlag, 1999, pp. 76-87.]. We compute their number for a given (m,n) and study their statistical behaviour. We then apply functionality to formulate an algorithm for generating arithmetic discrete planes, inspired by Debled-Renesson [I. Debled-Renesson, Reconnaissance des Droites et Plans Discrets, These de doctorat, Universite Louis Pasteur, Strasbourg, France, 1995.]. We also prove that an arithmetic discrete plane may be endowed with a combinatorial surface structure, in the spirit of Ref. [Y. Kenmochi, A. Imiyam Combinatorial topologies for discrete planes, in: DGCI, 11th International Conference, DGCI 2003, Lecture Notes in Computer Science, vol. 2886, Springer-Verlag, 2003, pp. 144-153.].

[1]  Mohamed Tajine,et al.  Recognizing arithmetic straight lines and planes , 1996, DGCI.

[2]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[3]  Jean-Marc Chassery,et al.  (n, m)-Cubes and Farey Nets for Naive Planes Understanding , 1999, DGCI.

[4]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[5]  Jean Françon,et al.  Polyhedrization of the Boundary of a Voxel Object , 1999, DGCI.

[6]  Yan Gérard Local Configurations of Digital Hyperplanes , 1999, DGCI.

[7]  Valentin E. Brimkov,et al.  Graceful Planes and Thin Tunnel-Free Meshes , 1999, DGCI.

[8]  Günter Rote Sequences With Subword Complexity 2n , 1994 .

[9]  Marie-Andrée Jacob-Da Col About local configurations in arithmetic planes , 2002, Theor. Comput. Sci..

[10]  Valentin E. Brimkov,et al.  Thin discrete triangular meshes , 2000, Theor. Comput. Sci..

[11]  Gilles Bertrand,et al.  Complete Local Characterization of Strong 26-Surfaces: Continuous Analogs for Strong 26-Surfaces , 1999, Int. J. Pattern Recognit. Artif. Intell..

[12]  Isabelle Debled-Rennesson,et al.  New approach to digital planes , 1995, Other Conferences.

[13]  Laurent Vuillon,et al.  Palindromes and Two-Dimensional Sturmian Sequences , 2001, J. Autom. Lang. Comb..

[14]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[15]  Atsushi Imiya,et al.  Combinatorial Topologies for Discrete Planes , 2003, DGCI.

[16]  Bertrand Nouvel,et al.  Density of Symbols in Discretized Rotation Configurations , 2005 .

[17]  Isabelle Debled-Rennesson,et al.  Segmentation of Discrete Curves into Fuzzy Segments , 2003, Electron. Notes Discret. Math..

[18]  Valentin E. Brimkov,et al.  Minimally Thin Discrete Triangulation , 2000, Volume Graphics.

[19]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[20]  Reinhard Klette,et al.  Curves, Hypersurfaces, and Good Pairs of Adjacency Relations , 2004, IWCIA.

[21]  Atsushi Imiya,et al.  Naive Planes as Discrete Combinatorial Surfaces , 2000, DGCI.

[22]  Jean-Maurice Schramm,et al.  Coplanar Tricubes , 1997, DGCI.

[23]  Eric Andres,et al.  Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..

[24]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[25]  Valentin E. Brimkov,et al.  Graceful planes and lines , 2002, Theor. Comput. Sci..

[26]  Isabelle Debled-Rennesson,et al.  Etude et reconnaissance des droites et plans discrets , 1995 .

[27]  Jean-Marc Chassery,et al.  Recognition of Digital Naive Planes and Polyhedrization , 2000, DGCI.

[28]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[29]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[30]  Jean-Pierre Reveilles,et al.  Combinatorial pieces in digital lines and planes , 1995, Optics & Photonics.

[31]  Jean Françon On the topology of an arithmetic plane. , 1996 .

[32]  Laurent Vuillon Local configurations in a discrete plane , 1999 .

[33]  Christophe Fiorio,et al.  Generalized Functionality for Arithmetic Discrete Planes , 2005, DGCI.

[34]  Eric Andres,et al.  Object discretizations in higher dimensions , 2002, Pattern Recognit. Lett..

[35]  Jean Françon Sur la topologie d'un plan arithmétique , 1996, Theor. Comput. Sci..

[36]  Jean-Marc Chassery,et al.  Coexistence of Tricubes in Digital Naive Plane , 1997, DGCI.