On some applications of generalized functionality for arithmetic discrete planes
暂无分享,去创建一个
[1] Mohamed Tajine,et al. Recognizing arithmetic straight lines and planes , 1996, DGCI.
[2] Azriel Rosenfeld,et al. Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..
[3] Jean-Marc Chassery,et al. (n, m)-Cubes and Farey Nets for Naive Planes Understanding , 1999, DGCI.
[4] Laurent Vuillon,et al. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..
[5] Jean Françon,et al. Polyhedrization of the Boundary of a Voxel Object , 1999, DGCI.
[6] Yan Gérard. Local Configurations of Digital Hyperplanes , 1999, DGCI.
[7] Valentin E. Brimkov,et al. Graceful Planes and Thin Tunnel-Free Meshes , 1999, DGCI.
[8] Günter Rote. Sequences With Subword Complexity 2n , 1994 .
[9] Marie-Andrée Jacob-Da Col. About local configurations in arithmetic planes , 2002, Theor. Comput. Sci..
[10] Valentin E. Brimkov,et al. Thin discrete triangular meshes , 2000, Theor. Comput. Sci..
[11] Gilles Bertrand,et al. Complete Local Characterization of Strong 26-Surfaces: Continuous Analogs for Strong 26-Surfaces , 1999, Int. J. Pattern Recognit. Artif. Intell..
[12] Isabelle Debled-Rennesson,et al. New approach to digital planes , 1995, Other Conferences.
[13] Laurent Vuillon,et al. Palindromes and Two-Dimensional Sturmian Sequences , 2001, J. Autom. Lang. Comb..
[14] Jean-Pierre Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .
[15] Atsushi Imiya,et al. Combinatorial Topologies for Discrete Planes , 2003, DGCI.
[16] Bertrand Nouvel,et al. Density of Symbols in Discretized Rotation Configurations , 2005 .
[17] Isabelle Debled-Rennesson,et al. Segmentation of Discrete Curves into Fuzzy Segments , 2003, Electron. Notes Discret. Math..
[18] Valentin E. Brimkov,et al. Minimally Thin Discrete Triangulation , 2000, Volume Graphics.
[19] Daniel Cohen-Or,et al. Volume graphics , 1993, Computer.
[20] Reinhard Klette,et al. Curves, Hypersurfaces, and Good Pairs of Adjacency Relations , 2004, IWCIA.
[21] Atsushi Imiya,et al. Naive Planes as Discrete Combinatorial Surfaces , 2000, DGCI.
[22] Jean-Maurice Schramm,et al. Coplanar Tricubes , 1997, DGCI.
[23] Eric Andres,et al. Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..
[24] Pierre Arnoux,et al. Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..
[25] Valentin E. Brimkov,et al. Graceful planes and lines , 2002, Theor. Comput. Sci..
[26] Isabelle Debled-Rennesson,et al. Etude et reconnaissance des droites et plans discrets , 1995 .
[27] Jean-Marc Chassery,et al. Recognition of Digital Naive Planes and Polyhedrization , 2000, DGCI.
[28] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[29] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[30] Jean-Pierre Reveilles,et al. Combinatorial pieces in digital lines and planes , 1995, Optics & Photonics.
[31] Jean Françon. On the topology of an arithmetic plane. , 1996 .
[32] Laurent Vuillon. Local configurations in a discrete plane , 1999 .
[33] Christophe Fiorio,et al. Generalized Functionality for Arithmetic Discrete Planes , 2005, DGCI.
[34] Eric Andres,et al. Object discretizations in higher dimensions , 2002, Pattern Recognit. Lett..
[35] Jean Françon. Sur la topologie d'un plan arithmétique , 1996, Theor. Comput. Sci..
[36] Jean-Marc Chassery,et al. Coexistence of Tricubes in Digital Naive Plane , 1997, DGCI.