Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy

[1]  Ardian Morina,et al.  MoS2 tribofilm distribution from low viscosity lubricants and its effect on friction , 2020 .

[2]  Yip-Wah Chung,et al.  Formation and Nature of Carbon-Containing Tribofilms. , 2019, ACS applied materials & interfaces.

[3]  A. Neville,et al.  Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[4]  A. Neville,et al.  MoDTC Tribochemistry in Steel/Steel and Steel/Diamond-Like-Carbon Systems Lubricated With Model Lubricants and Fully Formulated Engine Oils , 2018, Journal of Tribology.

[5]  S. Sasaki,et al.  In Situ Raman Observations of the Formation of MoDTC-Derived Tribofilms at Steel/Steel Contact Under Boundary Lubrication , 2018, Tribology Transactions.

[6]  H. Fujita,et al.  Advantages and Challenges for Low Viscosity Oils in Emergent Countries , 2017 .

[7]  K. Holmberg,et al.  Influence of tribology on global energy consumption, costs and emissions , 2017 .

[8]  A. Neville,et al.  The role of surface roughness and slide-roll ratio on the decomposition of MoDTC in tribological contacts , 2017 .

[9]  A. Neville,et al.  Transient processes of MoS2 tribofilm formation under boundary lubrication , 2016 .

[10]  Ganesh Kamath,et al.  Carbon-based tribofilms from lubricating oils , 2016, Nature.

[11]  L. Marks,et al.  Graphitic Carbon Films Across Systems , 2016, Tribology Letters.

[12]  Hugh Spikes,et al.  On the Mechanism of ZDDP Antiwear Film Formation , 2016, Tribology Letters.

[13]  Bernardo Tormos,et al.  Assessment of low-viscosity oil performance and degradation in a heavy duty engine real-world fleet test , 2016 .

[14]  A. Neville,et al.  New insights on the decomposition mechanism of Molybdenum DialkyldiThioCarbamate (MoDTC): a Raman spectroscopic study , 2016 .

[15]  Lianqing Liu,et al.  Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2 , 2016, Science and technology of advanced materials.

[16]  H. Tsuboi,et al.  A computational chemistry study on friction of h-MoS₂. Part II. Friction anisotropy. , 2010, The journal of physical chemistry. B.

[17]  M. Koyama,et al.  A computational chemistry study on friction of h-MoS(2). Part I. Mechanism of single sheet lubrication. , 2009, The journal of physical chemistry. B.

[18]  Béatrice Vacher,et al.  Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation , 2005 .

[19]  H. Spikes,et al.  Chemical and Physical Analysis of Reaction Films Formed by Molybdenum Dialkyl-Dithiocarbamate Friction Modifier Additive Using Raman and Atomic Force Microscopy , 2001 .

[20]  H. Spikes,et al.  The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I — Factors Influencing Friction Reduction , 2001 .

[21]  J. M. Martín,et al.  MoS2 single sheet lubrication by molybdenum dithiocarbamate , 1998 .

[22]  J. M. Martín,et al.  Superlubricity of MoS2: crystal orientation mechanisms , 1994 .

[23]  J. M. Martín,et al.  Superlubricity of molybdenum disulphide. , 1993, Physical review. B, Condensed matter.

[24]  Yuji Yamamoto,et al.  Friction and Wear Characteristics of Molybdenum Dithiocarbamate and Molybdenum Dithiophosphate , 1989 .

[25]  T. J. Risdon,et al.  EFFECT OF MOLYBDENUM-CONTAINING, OIL-SOLUBLE FRICTION MODIFIERS ON ENGINE FUEL ECONOMY AND GEAR OIL EFFICIENCY , 1981 .

[26]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation , 1975 .