The Magnetic Properties of Several Pseudo-Jahn-Teller Nonbenzenoid Aromatic Hydrocarbons

The effect of bond length alternation on the magnetic properties of several Pseudo-Jahn-Teller nonbenzenoid aromatic hydrocarbons with 4ν carbon atoms will be investigated. The magnetic moment and the susceptibility of a cyclic polyene will first be formulated in terms of the bond alternation parameter. Appropriate cross-links for forming nonbenzenoid aromatic hydrocarbons, such as pentalene and heptalene, will then be treated as perturbations. It will be shown that the anomalously large paramagnetic susceptibilities of these molecules predicted by Pullman et al. (“Les Theories Electroniques de la Chimie Organique,” Masson, Paris (1952), p. 527) arise mainly from the neglect of the bond alternation inherent in them. It will then be concluded that the magnetic susceptibility is a very sensitive indicator of the bond alternation, and that the diamag-netically-induced ring currents in these molecules are very much impeded.

[1]  T. Nakajima,et al.  The Electronic Structures and Spectra of Pentalene and Heptalene , 1964 .

[2]  K. Hafner Struktur und aromatischer Charakter nichtbenzoider cyclisch konjugierter Systeme , 1963 .

[3]  K. Hafner,et al.  Fulvene — Isomere benzoider Verbindungen , 1963 .

[4]  L. C. Snyder A SIMPLE MOLECULAR ORBITAL STUDY OF AROMATIC MOLECULES AND IONS HAVING ORBITALLY DEGENERATE GROUND STATES , 1962 .

[5]  Y. Gaoni,et al.  The Nuclear Magnetic Resonance Spectroscopy of a Series of Annulenes and Dehydro-annulenes , 1962 .

[6]  M. Gouterman,et al.  A perimeter model for the magnetic properties of some non-benzenoid aromatic hydrocarbons , 1962 .

[7]  L. Salem Some consequences of bond alternation in long polyenes , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  H. C. Longuet-Higgins,et al.  The alternation of bond lengths in large conjugated molecules. III. The cyclic polyenes C18H18, C24H24 and C30H30 , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  T. J. Katz THE CYCLOÖCTATETRAENYL DIANION , 1960 .

[10]  H. L. Strauss,et al.  ESR Spectrum of the Cyclooctatetraenyl Radical Anion , 1960 .

[11]  R. Mcweeny,et al.  Ring currents and proton magnetic resonance in aromatic molecules , 1958 .

[12]  Y. Ooshika A Semi-empirical Theory of the Conjugated Systems : II. Bond Alternation in Conjugated Chains , 1957 .

[13]  R. Mcweeny The Diamagnetic Anisotropy of Large Aromatic Systems V: Interpretation of the Results , 1953 .

[14]  R. Mcweeny The Diamagnetic Anisotropy of Large Aromatic Systems IV: The Polyacenes , 1952 .

[15]  R. Mcweeny The Diamagnetic Anisotropy of Large Aromatic Systems: III Structures with Hexagonal Symmetry , 1951 .

[16]  B. Pullman,et al.  Calcul quantique de l'anisotropie diamagnétique des molécules organiques - I. La méthode , 1951 .

[17]  S. Shida,et al.  Magnetic Property and Resonance Character of Cycloöctatetraene (C8H8) , 1951 .

[18]  R. Mcweeny The Diamagnetic Anisotropy of Large Aromatic Systems: Parts I and II , 1951 .

[19]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[20]  T. Nakajima,et al.  Bond length alternations in some non-benzenoid aromatic hydrocarbons , 1964 .

[21]  H. Yamaguchi,et al.  Bond length alternation in s-indacene , 1964 .

[22]  C. Coulson,et al.  Valency-bond studies of some conjugated hydrocarbons—II : Pentalene, and some preliminary results on heptalene , 1963 .

[23]  D. D. Boer,et al.  Bond length alternation in heptalene , 1962 .

[24]  D. D. Boer,et al.  Bond length alternation in pentalene , 1961 .