Cannabidiol modulates excitatory-inhibitory ratio to counter hippocampal hyperactivity

[1]  C. Akerman,et al.  Why won’t it stop? The dynamics of benzodiazepine resistance in status epilepticus , 2022, Nature Reviews Neurology.

[2]  M. Kano,et al.  Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures , 2022, Frontiers in Neural Circuits.

[3]  I. Scheffer,et al.  Add‐on cannabidiol in patients with Dravet syndrome: Results of a long‐term open‐label extension trial , 2021, Epilepsia.

[4]  Jordan S. Farrell,et al.  In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity , 2021, Neuron.

[5]  W. Catterall,et al.  Combined Antiseizure Efficacy of Cannabidiol and Clonazepam in a Conditional Mouse Model of Dravet Syndrome , 2021, Journal of experimental neurology.

[6]  B. Bean,et al.  Cannabidiol Inhibition of Murine Primary Nociceptors: Tight Binding to Slow Inactivated States of Nav1.8 Channels , 2021, The Journal of Neuroscience.

[7]  E. Wirrell,et al.  Add-on Cannabidiol Treatment for Drug-Resistant Seizures in Tuberous Sclerosis Complex , 2020, JAMA neurology.

[8]  J. Henley,et al.  Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R) , 2020, Frontiers in Molecular Neuroscience.

[9]  I. Scheffer,et al.  Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome , 2020, JAMA neurology.

[10]  Benjamin J. Whalley,et al.  The proposed mechanisms of action of CBD in epilepsy. , 2020, Epileptic disorders : international epilepsy journal with videotape.

[11]  N. Absalom,et al.  Coadministered cannabidiol and clobazam: Preclinical evidence for both pharmacodynamic and pharmacokinetic interactions , 2019, Epilepsia.

[12]  P. Deyn,et al.  PTZ-induced seizures in mice require a revised Racine scale , 2019, Epilepsy & Behavior.

[13]  Benjamin J. Whalley,et al.  Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models , 2018, Epilepsia.

[14]  P. Ruben,et al.  Inhibitory effects of cannabidiol on voltage-dependent sodium currents , 2018, The Journal of Biological Chemistry.

[15]  K. Mackie,et al.  Cannabidiol Inhibits Endocannabinoid Signaling in Autaptic Hippocampal Neurons , 2018, Molecular Pharmacology.

[16]  Anup D. Patel,et al.  Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome , 2018, The New England journal of medicine.

[17]  M. Walker,et al.  Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model , 2018, British journal of pharmacology.

[18]  Anup D. Patel,et al.  Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome , 2018, Neurology.

[19]  W. Catterall,et al.  Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome , 2017, Proceedings of the National Academy of Sciences.

[20]  A. Teixeira,et al.  Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels , 2017, Epilepsy & Behavior.

[21]  R. Williamson,et al.  A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity , 2017, Hippocampus.

[22]  J. Szaflarski,et al.  Interactions between cannabidiol and commonly used antiepileptic drugs , 2017, Epilepsia.

[23]  I. Scheffer,et al.  Trial of Cannabidiol for Drug‐Resistant Seizures in the Dravet Syndrome , 2017, The New England journal of medicine.

[24]  Benjamin J. Whalley,et al.  Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection , 2017, Epilepsy & Behavior.

[25]  I. McGregor,et al.  The direct actions of cannabidiol and 2‐arachidonoyl glycerol at GABAA receptors , 2017, Pharmacological research.

[26]  Orrin Devinsky,et al.  Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. , 2017, The New England journal of medicine.

[27]  J. Vincent,et al.  Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features. , 2016, American journal of human genetics.

[28]  T. Cummins,et al.  Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. , 2016, Brain : a journal of neurology.

[29]  G. Buzsáki,et al.  Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy , 2016, Nature Medicine.

[30]  Benjamin J. Whalley,et al.  A Low Mortality, High Morbidity Reduced Intensity Status Epilepticus (RISE) Model of Epilepsy and Epileptogenesis in the Rat , 2016, PLoS ONE.

[31]  I. Soltesz,et al.  Organization and control of epileptic circuits in temporal lobe epilepsy. , 2016, Progress in brain research.

[32]  R. Laprairie,et al.  Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor , 2015, British journal of pharmacology.

[33]  K. Mackie,et al.  Role of GPR55 during Axon Growth and Target Innervation , 2015, eNeuro.

[34]  K. Ohta,et al.  Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord , 2015, Science.

[35]  M. Dallas,et al.  Molecular Targets of Cannabidiol in Neurological Disorders , 2015, Neurotherapeutics.

[36]  E. Thiele,et al.  Drug–drug interaction between clobazam and cannabidiol in children with refractory epilepsy , 2015, Epilepsia.

[37]  J. García-Verdugo,et al.  Membrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity , 2015, PLoS biology.

[38]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[39]  H. Scharfman,et al.  Suppression of Adult Neurogenesis Increases the Acute Effects of Kainic Acid , 2015, Experimental Neurology.

[40]  Masahiko Watanabe,et al.  Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling , 2014, Nature Neuroscience.

[41]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[42]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[43]  A. Yamashita,et al.  The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. , 2013, Prostaglandins & other lipid mediators.

[44]  Z. Vogel,et al.  Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death , 2013, Cell Death and Disease.

[45]  D. Rusakov,et al.  Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses , 2013, Proceedings of the National Academy of Sciences.

[46]  M. Waldhoer,et al.  The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55* , 2012, The Journal of Biological Chemistry.

[47]  P. Castillo,et al.  Endocannabinoid Signaling and Synaptic Function , 2012, Neuron.

[48]  Nicolas Chenouard,et al.  Icy: an open bioimage informatics platform for extended reproducible research , 2012, Nature Methods.

[49]  David A. Lewis,et al.  Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia , 2012, Trends in Neurosciences.

[50]  B. Platt,et al.  Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour , 2012, Psychopharmacology.

[51]  T. Bisogno,et al.  Effects of cannabinoids and cannabinoid‐enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes , 2011, British journal of pharmacology.

[52]  B. Platt,et al.  Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour , 2011, Psychopharmacology.

[53]  G. Buzsáki,et al.  Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations , 2011, Brain Structure and Function.

[54]  Lewis D. Griffin,et al.  NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit , 2010, Proceedings of the National Academy of Sciences.

[55]  R. Ross The enigmatic pharmacology of GPR55. , 2009, Trends in pharmacological sciences.

[56]  A. Irving,et al.  The GPR55 ligand L‐α‐lysophosphatidylinositol promotes RhoA‐dependent Ca2+ signaling and NFAT activation , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[57]  A. Yamashita,et al.  2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. , 2008, Journal of biochemistry.

[58]  István Katona,et al.  Endocannabinoid signaling as a synaptic circuit breaker in neurological disease , 2008, Nature Medicine.

[59]  T. Hutchinson,et al.  TRPV2 Is Activated by Cannabidiol and Mediates CGRP Release in Cultured Rat Dorsal Root Ganglion Neurons , 2008, The Journal of Neuroscience.

[60]  M. Connor,et al.  Inhibition of Recombinant Human T-type Calcium Channels by Δ9-Tetrahydrocannabinol and Cannabidiol* , 2008, Journal of Biological Chemistry.

[61]  S. Moss,et al.  GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition , 2008, Nature Reviews Neuroscience.

[62]  H. Goodkin,et al.  Subunit-Specific Trafficking of GABAA Receptors during Status Epilepticus , 2008, The Journal of Neuroscience.

[63]  K. Mackie,et al.  GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current , 2008, Proceedings of the National Academy of Sciences.

[64]  S. Hjorth,et al.  The orphan receptor GPR55 is a novel cannabinoid receptor , 2007, British journal of pharmacology.

[65]  A. Yamashita,et al.  Identification of GPR55 as a lysophosphatidylinositol receptor. , 2007, Biochemical and biophysical research communications.

[66]  M. Emerit,et al.  A γ2(R43Q) Mutation, Linked to Epilepsy in Humans, Alters GABAA Receptor Assembly and Modifies Subunit Composition on the Cell Surface* , 2006, Journal of Biological Chemistry.

[67]  C. Hillard,et al.  Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Haydon,et al.  Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[69]  Zhen Yan,et al.  Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  B. Costa,et al.  Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation , 2004, British journal of pharmacology.

[71]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[72]  M. Eder,et al.  CB1 Cannabinoid Receptors and On-Demand Defense Against Excitotoxicity , 2003, Science.

[73]  M. Merzenich,et al.  Model of autism: increased ratio of excitation/inhibition in key neural systems , 2003, Genes, brain, and behavior.

[74]  T. Voyno-Yasenetskaya,et al.  RhoA Interaction with Inositol 1,4,5-Trisphosphate Receptor and Transient Receptor Potential Channel-1 Regulates Ca2+ Entry , 2003, Journal of Biological Chemistry.

[75]  G. Ahmadian,et al.  Interaction of Calcineurin and Type-A GABA Receptor γ2 Subunits Produces Long-Term Depression at CA1 Inhibitory Synapses , 2003, The Journal of Neuroscience.

[76]  T. Özben,et al.  Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model , 2002, Acta neurologica Scandinavica.

[77]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[78]  Anatol C. Kreitzer,et al.  Cerebellar Depolarization-Induced Suppression of Inhibition Is Mediated by Endogenous Cannabinoids , 2001, The Journal of Neuroscience.

[79]  D. Ponde,et al.  Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide , 2001, British journal of pharmacology.

[80]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[81]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[82]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[83]  A. Aguzzi,et al.  Selective Alterations in GABAA Receptor Subtypes in Human Temporal Lobe Epilepsy , 2000, The Journal of Neuroscience.

[84]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[85]  J. Brandstätter,et al.  Loss of Postsynaptic GABAA Receptor Clustering in Gephyrin-Deficient Mice , 1999, The Journal of Neuroscience.

[86]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[87]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[88]  F. Evans,et al.  Activation of phospholipase A2 by cannabinoids , 1987, FEBS letters.

[89]  H. White,et al.  Effects of delta 9-tetrahydrocannabinol and cannabidiol on phospholipase and other enzymes regulating arachidonate metabolism. , 1980, Prostaglandins and medicine.

[90]  R. Racine Modification of seizure activity by electrical stimulation: cortical areas. , 1975, Electroencephalography and clinical neurophysiology.

[91]  R. Racine Modification of seizure activity by electrical stimulation. I. After-discharge threshold. , 1972, Electroencephalography and clinical neurophysiology.