Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking

We present a combined study from angle-resolved photoemission and density-functional-theory calculations of the temperature-dependent electronic structure in the excitonic insulator candidate Ta2NiSe5. Our experimental measurements unambiguously establish the normal state as a semimetal with a significant band overlap of >100 meV. Our temperature-dependent measurements indicate how these low-energy states hybridize when cooling through the well-known 327 K phase transition in this system. From our calculations and polarizationdependent photoemission measurements, we demonstrate the importance of a loss of mirror symmetry in enabling the band hybridization, driven by a shearlike structural distortion which reduces the crystal symmetry from orthorhombic to monoclinic. Our results thus point to the key role of the lattice distortion in enabling the phase transition of Ta2NiSe5.

[1]  K. Shimada,et al.  Electrical Tuning of the Excitonic Insulator Ground State of Ta_{2}NiSe_{5}. , 2019, Physical review letters.

[2]  Xuan Luo,et al.  Strong Electron-Phonon Coupling in the Excitonic Insulator Ta2NiSe5. , 2019, Inorganic chemistry.

[3]  L. E. Dickson,et al.  116 , 2018, The Devil's Fork.

[4]  B. Min,et al.  Strong interband interaction in the excitonic insulator phase of Ta2NiSe5 , 2018, Physical Review B.

[5]  H. Takagi,et al.  Photo-induced semimetallic states realised in electron–hole coupled insulators , 2018, Nature Communications.

[6]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[7]  Timur K. Kim,et al.  Orbital- and k_{z}-Selective Hybridization of Se 4p and Ti 3d States in the Charge Density Wave Phase of TiSe_{2}. , 2018, Physical review letters.

[8]  Yingying Zhang,et al.  Electronic structures of layered Ta2NiS5 single crystals revealed by high-resolution angle-resolved photoemission spectroscopy , 2018 .

[9]  H. Sawa,et al.  Antiferroelectric distortion with anomalous phonon softening in the excitonic insulator Ta2NiSe5 , 2018, Physical Review B.

[10]  K. Sugimoto,et al.  Pressure-induced coherent sliding-layer transition in the excitonic insulator Ta2NiSe5 , 2018, IUCrJ.

[11]  H. Takagi,et al.  Giant exciton Fano resonance in quasi-one-dimensional Ta 2 NiSe 5 , 2017, 1702.05953.

[12]  H. Kono,et al.  Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5 , 2017, Nature Communications.

[13]  F. Flicker,et al.  Signatures of exciton condensation in a transition metal dichalcogenide , 2016, Science.

[14]  Hidenori Takagi,et al.  Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5 , 2016, Science Advances.

[15]  H. Takagi,et al.  Ultrafast Electronic Band Gap Control in an Excitonic Insulator. , 2016, Physical review letters.

[16]  H. Fehske,et al.  Fate of the excitonic insulator in the presence of phonons , 2014, 1407.6059.

[17]  T. Mizokawa,et al.  Excitonic Bose-Einstein condensation in Ta 2 NiSe 5 above room temperature , 2014, 1403.2794.

[18]  Y. Ohta,et al.  Orthorhombic-to-monoclinic phase transition of Ta 2 NiSe 5 induced by the Bose-Einstein condensation of excitons , 2012, 1210.2787.

[19]  P. Blaha,et al.  Improving the modified Becke-Johnson exchange potential , 2012 .

[20]  H. Takagi,et al.  Photoemission Spectroscopy of Ta2NiSe5 , 2012 .

[21]  K. Rossnagel On the origin of charge-density waves in select layered transition-metal dichalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Tao Qian,et al.  A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.

[23]  M. Calandra,et al.  Charge-density wave and superconducting dome in TiSe2 from electron-phonon interaction. , 2011, Physical review letters.

[24]  Michael Bauer,et al.  Collapse of long-range charge order tracked by time-resolved photoemission at high momenta , 2011, Nature.

[25]  C. Battaglia,et al.  Exciton condensation driving the periodic lattice distortion of 1T-TiSe2. , 2010, Physical review letters.

[26]  J. V. Wezel,et al.  An alternative interpretation of recent ARPES measurements on TiSe2 , 2009, 0911.3575.

[27]  T. Mizokawa,et al.  Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. , 2009, Physical review letters.

[28]  H. Fehske,et al.  Possibility of an excitonic insulator at the semiconductor-semimetal transition , 2006, cond-mat/0605415.

[29]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[30]  M. Chou,et al.  Electron-hole coupling and the charge density wave transition in TiSe2. , 2002, Physical review letters.

[31]  R. Fleming,et al.  Physical and structural properties of the new layered compounds Ta2NiS5 and Ta2NiSe5 , 1986 .

[32]  James A. Ibers,et al.  Structure and Physical Properties of the New Layered Ternary Chalcogenides Ta2NiS5 and Ta2NiSe5 , 1985 .

[33]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .