Sparse Methods for Direction-of-Arrival Estimation

Abstract Direction-of-arrival (DOA) estimation refers to the process of retrieving the direction information of several electromagnetic waves/sources from the outputs of a number of receiving antennas that form a sensor array. DOA estimation is a major problem in array signal processing and has wide applications in radar, sonar, wireless communications, etc. With the development of sparse representation and compressed sensing, the last decade has witnessed a tremendous advance in this research topic. The purpose of this article is to provide an overview of these sparse methods for DOA estimation, with a particular highlight on the recently developed gridless sparse methods, e.g., those based on covariance fitting and the atomic norm. Several future research directions are also discussed.

[1]  Jian Li,et al.  Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[3]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[4]  Qiang Fu,et al.  A Fast and Accurate Reconstruction Algorithm for Compressed Sensing of Complex Sinusoids , 2013, IEEE Transactions on Signal Processing.

[5]  R. Cooke Real and Complex Analysis , 2011 .

[6]  Bhaskar D. Rao,et al.  Subset selection in noise based on diversity measure minimization , 2003, IEEE Trans. Signal Process..

[7]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[8]  Wei-Ping Zhu,et al.  Direction of Arrival Estimation for Off-Grid Signals Based on Sparse Bayesian Learning , 2016, IEEE Sensors Journal.

[9]  Guangjie Han,et al.  Two Novel DOA Estimation Approaches for Real-Time Assistant Calibration Systems in Future Vehicle Industrial , 2017, IEEE Systems Journal.

[10]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[11]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[12]  Ben Adcock,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016, Found. Comput. Math..

[13]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[14]  Yonina C. Eldar,et al.  Rank Awareness in Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[15]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[16]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[17]  Petre Stoica,et al.  Gridless compressive-sensing methods for frequency estimation: Points of tangency and links to basics , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[18]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[19]  Cishen Zhang,et al.  Orthonormal Expansion $\ell_{1}$-Minimization Algorithms for Compressed Sensing , 2011, IEEE Transactions on Signal Processing.

[20]  Sergios Theodoridis,et al.  Academic Press Library in Signal Processing, Volume 3: Array and Statistical Signal Processing , 2013 .

[21]  Yuejie Chi,et al.  Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors , 2014, IEEE Transactions on Signal Processing.

[22]  Anastasios Kyrillidis,et al.  Dropping Convexity for Faster Semi-definite Optimization , 2015, COLT.

[23]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[24]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.

[25]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[26]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[27]  T. Söderström,et al.  On reparametrization of loss functions used in estimation and the invariance principle , 1989 .

[28]  Yoram Bresler,et al.  On the number of signals resolvable by a uniform linear array , 1986, IEEE Trans. Acoust. Speech Signal Process..

[29]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[30]  Marc E. Pfetsch,et al.  A compact formulation for the l21 mixed-norm minimization problem , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[32]  Jun Li,et al.  An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies , 2016, Signal Process..

[33]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[34]  Björn E. Ottersten,et al.  Covariance Matching Estimation Techniques for Array Signal Processing Applications , 1998, Digit. Signal Process..

[35]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[36]  Lihua Xie,et al.  Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.

[37]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  Arye Nehorai,et al.  Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches , 2013, IEEE Transactions on Signal Processing.

[40]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[41]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[42]  Mostafa Kaveh,et al.  Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Zhilin Zhang,et al.  A new approach for heart rate monitoring using photoplethysmography signals contaminated by motion artifacts , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Giuseppe Caire,et al.  Massive MIMO Channel Subspace Estimation From Low-Dimensional Projections , 2015, IEEE Transactions on Signal Processing.

[45]  Lihua Xie,et al.  On Gridless Sparse Methods for Multi-snapshot Direction of Arrival Estimation , 2017, Circuits Syst. Signal Process..

[46]  Cishen Zhang,et al.  A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.

[47]  Yi Zhang,et al.  Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning , 2014, Signal Process..

[48]  P. Rocca,et al.  Directions-of-Arrival Estimation Through Bayesian Compressive Sensing Strategies , 2013, IEEE Transactions on Antennas and Propagation.

[49]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[50]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[51]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[52]  Cishen Zhang,et al.  Robustly Stable Signal Recovery in Compressed Sensing With Structured Matrix Perturbation , 2011, IEEE Transactions on Signal Processing.

[53]  Jian Li,et al.  Sparse Learning via Iterative Minimization With Application to MIMO Radar Imaging , 2011, IEEE Transactions on Signal Processing.

[54]  Marie Lasserre,et al.  Bayesian sparse Fourier representation of off-grid targets , 2014, 2014 International Radar Conference.

[55]  Kyuwan Choi,et al.  Detecting the Number of Clusters in n-Way Probabilistic Clustering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[57]  Håkan Hjalmarsson,et al.  A Note on the SPICE Method , 2012, IEEE Transactions on Signal Processing.

[58]  Lu Wang,et al.  Novel Wideband DOA Estimation Based on Sparse Bayesian Learning With Dirichlet Process Priors , 2016, IEEE Transactions on Signal Processing.

[59]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[60]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[61]  Dmitriy Shutin,et al.  Incremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals , 2013 .

[62]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[63]  Dave Zachariah,et al.  Alternating Least-Squares for Low-Rank Matrix Reconstruction , 2012, IEEE Signal Processing Letters.

[64]  E.J. Candes Compressive Sampling , 2022 .

[65]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[66]  Rodney A. Kennedy,et al.  Effects of basis-mismatch in compressive sampling of continuous sinusoidal signals , 2010, 2010 2nd International Conference on Future Computer and Communication.

[67]  T. Kailath,et al.  A subspace rotation approach to signal parameter estimation , 1986, Proceedings of the IEEE.

[68]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[69]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[70]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[71]  Kaushik Mahata,et al.  Direction-of-Arrival Estimation Using a Mixed $\ell _{2,0}$ Norm Approximation , 2010, IEEE Transactions on Signal Processing.

[72]  Pascal Larzabal,et al.  Compressed Sensing with Basis Mismatch: Performance Bounds and Sparse-Based Estimator , 2016, IEEE Transactions on Signal Processing.

[73]  Yonina C. Eldar,et al.  Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[74]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[75]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[76]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[77]  Cishen Zhang,et al.  Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.

[78]  Rick Chartrand,et al.  Nonconvex Compressed Sensing and Error Correction , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[79]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[80]  Bhaskar D. Rao,et al.  An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem , 2007, IEEE Transactions on Signal Processing.

[81]  Ioannis G. Tollis,et al.  Difference bases and sparse sensor arrays , 1993, IEEE Trans. Inf. Theory.

[82]  Jun Fang,et al.  Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach , 2016, IEEE Transactions on Signal Processing.

[83]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[84]  Anastasios Kyrillidis,et al.  Finding Low-rank Solutions to Matrix Problems, Efficiently and Provably , 2016, SIAM J. Imaging Sci..

[85]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[86]  Michael Elad,et al.  Introduction to the issue on Adaptive Sparse Representation of Data and Applications in Signal and Image Processing , 2011, IEEE J. Sel. Top. Signal Process..

[87]  Sun Dajun,et al.  Gridless SPICE applied to parameter estimation of underwater acoustic Frequency Hopping signals , 2016, 2016 IEEE/OES China Ocean Acoustics (COA).

[88]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[89]  Wotao Yin,et al.  TR 0707 A Fixed-Point Continuation Method for ` 1-Regularized Minimization with Applications to Compressed Sensing , 2007 .

[90]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[91]  Weiyu Xu,et al.  Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction , 2015, Applied and computational harmonic analysis.

[92]  Petre Stoica,et al.  Sparse Estimation of Spectral Lines: Grid Selection Problems and Their Solutions , 2012, IEEE Transactions on Signal Processing.

[93]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[94]  Lutao Liu,et al.  A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations , 2015, Sensors.

[95]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[96]  Tao Jian-wu,et al.  Off-Grid Sparse Estimator for Air Velocity in Missing-Data Case , 2016 .

[97]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[98]  Wei Cui,et al.  Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept , 2017, Signal Process..

[99]  Qihui Wu,et al.  An iterative approach for sparse direction-of-arrival estimation in co-prime arrays with off-grid targets , 2017, Digit. Signal Process..

[100]  Jun Fang,et al.  Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery , 2014, IEEE Signal Processing Letters.

[101]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[102]  Yonina C. Eldar,et al.  Reduce and Boost: Recovering Arbitrary Sets of Jointly Sparse Vectors , 2008, IEEE Transactions on Signal Processing.

[103]  Parikshit Shah,et al.  Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[104]  Mats Viberg,et al.  Introduction to Array Processing , 2014 .

[105]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[106]  R. Rochberg Toeplitz and Hankel operators on the Paley-Wiener space , 1987 .

[107]  Stephen P. Boyd,et al.  Portfolio optimization with linear and fixed transaction costs , 2007, Ann. Oper. Res..

[108]  Maryam Fazel,et al.  Iterative reweighted algorithms for matrix rank minimization , 2012, J. Mach. Learn. Res..

[109]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[110]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[111]  Michael P. Friedlander,et al.  Theoretical and Empirical Results for Recovery From Multiple Measurements , 2009, IEEE Transactions on Information Theory.

[112]  Ilan Ziskind,et al.  On unique localization of multiple sources by passive sensor arrays , 1989, IEEE Trans. Acoust. Speech Signal Process..

[113]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[114]  Yiyu Zhou,et al.  An Efficient Maximum Likelihood Method for Direction-of-Arrival Estimation via Sparse Bayesian Learning , 2012, IEEE Transactions on Wireless Communications.

[115]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[116]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[117]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[118]  Yonina C. Eldar,et al.  Introduction to the Issue on Compressive Sensing , 2010, IEEE J. Sel. Top. Signal Process..

[119]  Massimo Fornasier,et al.  Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..

[120]  Yoram Bresler,et al.  Subspace Methods for Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[121]  Jian-Feng Cai,et al.  Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion , 2016, Applied and Computational Harmonic Analysis.

[122]  Jong Chul Ye,et al.  Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing , 2012, IEEE Transactions on Information Theory.

[123]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[124]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[125]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[126]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[127]  Yabin Gu,et al.  Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation , 2016 .

[128]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[129]  Dmitriy Shutin,et al.  Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels , 2011, IEEE Transactions on Signal Processing.

[130]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[131]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[132]  Jian Li,et al.  New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.

[133]  H. Rauhut,et al.  Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .

[134]  Lihua Xie,et al.  Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution , 2015, IEEE Transactions on Information Theory.

[135]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[136]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[137]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[138]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[139]  Pei-Jung Chung,et al.  DOA Estimation Methods and Algorithms , 2014 .

[140]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[141]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[142]  Kaushik Mahata,et al.  Grid-less T.V minimization for DOA estimation , 2017, Signal Process..

[143]  Jian Li,et al.  Computationally efficient maximum-likelihood estimation of structured covariance matrices , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[144]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[145]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[146]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[147]  P. P. Vaidyanathan,et al.  A Grid-Less Approach to Underdetermined Direction of Arrival Estimation Via Low Rank Matrix Denoising , 2014, IEEE Signal Processing Letters.

[148]  P. Stoica,et al.  Direction-of-arrival estimation in applications with multipath and few snapshots , 1991 .

[149]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[150]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[151]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[152]  Petre Stoica,et al.  Connection between SPICE and Square-Root LASSO for sparse parameter estimation , 2014, Signal Process..

[153]  J David,et al.  Algorithms for Analysis, Design of Robust Controllers , 1994 .

[154]  Randolph L. Moses,et al.  Dynamic Dictionary Algorithms for Model Order and Parameter Estimation , 2013, IEEE Transactions on Signal Processing.

[155]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[156]  Qiang Fu,et al.  Compressed Sensing of Complex Sinusoids: An Approach Based on Dictionary Refinement , 2012, IEEE Transactions on Signal Processing.

[157]  Xiaohua Zhu,et al.  Noncontact Vital Sign Detection based on Stepwise Atomic Norm Minimization , 2015, IEEE Signal Processing Letters.

[158]  Lihua Xie,et al.  On gridless sparse methods for multi-snapshot DOA estimation , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[159]  Weijian Si,et al.  Off-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing , 2015, Sensors.

[160]  Michael Elad,et al.  Applications of Sparse Representation and Compressive Sensing , 2010, Proc. IEEE.

[161]  Yonina C. Eldar,et al.  Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint , 2013, IEEE Transactions on Signal Processing.

[162]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[163]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[164]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[165]  Jian Li,et al.  Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation , 2014, Digit. Signal Process..

[166]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[167]  Martin Vetterli,et al.  Compressive Sampling [From the Guest Editors] , 2008, IEEE Signal Processing Magazine.

[168]  Kaushik Mahata,et al.  Frequency Estimation From Arbitrary Time Samples , 2016, IEEE Transactions on Signal Processing.

[169]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[170]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[171]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Georgios B. Giannakis,et al.  Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling , 2010, IEEE Transactions on Signal Processing.

[173]  Marc E. Pfetsch,et al.  A Compact Formulation for the $\ell _{2,1}$ Mixed-Norm Minimization Problem , 2016, IEEE Transactions on Signal Processing.

[174]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[175]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[176]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[177]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[178]  M. Kowalski Sparse regression using mixed norms , 2009 .

[179]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[180]  Wen Hong,et al.  DLSLA 3-D SAR Imaging Based on Reweighted Gridless Sparse Recovery Method , 2016, IEEE Geoscience and Remote Sensing Letters.

[181]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[182]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.